9,410 research outputs found

    The magnetic environment of the Orion-Eridanus superbubble as revealed by Planck

    Full text link
    Using the 353-GHz polarization observations by the Planck satellite we characterize the magnetic field in the Orion-Eridanus superbubble, a nearby expanding structure that spans more than 1600 square degrees in the sky. We identify a region of both low dispersion of polarization orientations and high polarization fraction associated with the outer wall of the superbubble identified in the most recent models of the large-scale shape of the region. We use the Davis-Chandrasekhar-Fermi method to derive plane-of-the-sky magnetic field strengths of tens of microGauss toward the southern edge of the bubble. The comparison of these values with existing Zeeman splitting observations of HI in emission suggests that the large-scale magnetic field in the region was primarily shaped by the expanding superbubble.Comment: 7 pages, 8 figures. Accepted for publication as a Letter in A&A, section 1. Letters to the Editor (08/12/2017

    Coexistence of periods in a bisecting bifurcation

    Full text link
    The inner structure of the attractor appearing when the Varley-Gradwell-Hassell population model bifurcates from regular to chaotic behaviour is studied. By algebraic and geometric arguments the coexistence of a continuum of neutrally stable limit cycles with different periods in the attractor is explained.Comment: 13 pages, 5 figure

    Effect of partial ionization on wave propagation in solar magnetic flux tubes

    Full text link
    Observations show that waves are ubiquitous in the solar atmosphere and may play an important role for plasma heating. The study of waves in the solar corona is usually based on linear ideal magnetohydrodynamics (MHD) for a fully ionized plasma. However, the plasma in the photosphere and the chromosphere is only partially ionized. Here we investigate theoretically the impact of partial ionization on MHD wave propagation in cylindrical flux tubes in the two-fluid model. We derive the general dispersion relation that takes into account the effects of neutral-ion collisions and the neutral gas pressure. We take the neutral-ion collision frequency as an arbitrary parameter. Particular results for transverse kink modes and slow magnetoacoustic modes are shown. We find that the wave frequencies only depend on the properties of the ionized fluid when the neutral-ion collision frequency is much lower that the wave frequency. For high collision frequencies realistic of the solar atmosphere ions and neutrals behave as a single fluid with an effective density corresponding to the sum of densities of both fluids and an effective sound velocity computed as the average of the sound velocities of ions and neutrals. The MHD wave frequencies are modified accordingly. The neutral gas pressure can be neglected when studying transverse kink waves but it has to be taken into account for a consistent description of slow magnetoacoustic waves. The MHD waves are damped due to neutral-ion collisions. The damping is most efficient when the wave frequency and the collision frequency are of the same order of magnitude. For high collision frequencies slow magnetoacoustic waves are more efficiently damped than transverse kink waves. In addition, we find the presence of cut-offs for certain combinations of parameters that cause the waves to become non-propagating.Comment: Accepted for publication in A&

    Kelvin-Helmholtz instability in partially ionized compressible plasmas

    Full text link
    The Kelvin-Helmholtz Instability (KHI) has been observed in the solar atmosphere. Ion-neutral collisions may play a relevant role for the growth rate and evolution of the KHI in solar partially ionized plasmas as in, e.g., solar prominences. Here, we investigate the linear phase of the KHI at an interface between two partially ionized magnetized plasmas in the presence of a shear flow. The effects of ion-neutral collisions and compressibility are included in the analysis. We obtain the dispersion relation of the linear modes and perform parametric studies of the unstable solutions. We find that in the incompressible case the KHI is present for any velocity shear regardless the value of the collision frequency. In the compressible case, the domain of instability depends strongly on the plasma parameters, specially the collision frequency and the density contrast. For high collision frequencies and low density contrasts the KHI is present for super-Alfvenic velocity shear only. For high density contrasts the threshold velocity shear can be reduced to sub-Alfvenic values. For the particular case of turbulent plumes in prominences, we conclude that sub-Alfvenic flow velocities can trigger the KHI thanks to the ion-neutral coupling.Comment: Accepted for publication in Ap

    Pleomorphic adenoma of the nasal septum : a case report

    Get PDF
    Polypoid nasal lesions are commonly encountered in clinical practice and all should be examined histologically. The authors report a case of pleomorphic adenoma arising in the nasal septum in salivary-type tissue. The interest of this case is both in the relative rarity of the condition, and also in its being the first such report in local practice.peer-reviewe

    Families of piecewise linear maps with constant Lyapunov exponent

    Full text link
    We consider families of piecewise linear maps in which the moduli of the two slopes take different values. In some parameter regions, despite the variations in the dynamics, the Lyapunov exponent and the topological entropy remain constant. We provide numerical evidence of this fact and we prove it analytically for some special cases. The mechanism is very different from that of the logistic map and we conjecture that the Lyapunov plateaus reflect arithmetic relations between the slopes.Comment: 26 pages, 13 figure

    Bifurcations in the Lozi map

    Get PDF
    We study the presence in the Lozi map of a type of abrupt order-to-order and order-to-chaos transitions which are mediated by an attractor made of a continuum of neutrally stable limit cycles, all with the same period.Comment: 17 pages, 12 figure

    Linearized force constants method for lattice dynamics in mixed semiconductors

    Full text link
    A simple and accurate method of calculating phonon spectra in mixed semiconductors alloys, on the basis of preliminarily (from first principles) relaxed atomic structure, is proposed and tested for (Zn,Be)Se and (Ga,In)As solid solutions. The method uses an observation that the interatomic force constants, calculated ab initio for a number of microscopic configurations in the systems cited, show a clear linear variation of the main (diagonal) values of the interatomic force constants with the corresponding bond length. We formulate simple rules about how to recover the individual 3x3 subblocks of the force constants matrix in their local (bonds-related) coordinate systems and how to transform them into a global (crystal cell-related) coordinate system. Test calculations done for 64-atom supercells representing different concentrations of (Zn,Be)Se and (Ga,In)As show that the phonon frequencies and compositions of eigenvectors are faithfully reproduced in a linearized force constants calculation, as compared to true ab initio calculations.Comment: to appear in the proceedings of the Phonons2007 conference (Paris, July 2007
    • …
    corecore