6 research outputs found

    COVID‑19 mitigation by digital contact tracing and contact prevention (app‑based social exposure warnings)

    Get PDF
    A plethora of measures are being combined in the attempt to reduce SARS-CoV-2 spread. Due to its sustainability, contact tracing is one of the most frequently applied interventions worldwide, albeit with mixed results. We evaluate the performance of digital contact tracing for different infection detection rates and response time delays. We also introduce and analyze a novel strategy we call contact prevention, which emits high exposure warnings to smartphone users according to Bluetooth-based contact counting. We model the effect of both strategies on transmission dynamics in SERIA, an agent-based simulation platform that implements population-dependent statistical distributions. Results show that contact prevention remains effective in scenarios with high diagnostic/response time delays and low infection detection rates, which greatly impair the effect of traditional contact tracing strategies. Contact prevention could play a significant role in pandemic mitigation, especially in developing countries where diagnostic and tracing capabilities are inadequate. Contact prevention could thus sustainably reduce the propagation of respiratory viruses while relying on available technology, respecting data privacy, and most importantly, promoting community-based awareness and social responsibility. Depending on infection detection and app adoption rates, applying a combination of digital contact tracing and contact prevention could reduce pandemic-related mortality by 20–56%.publishedVersionFil: Soldano, Germán J. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas; Argentina.Fil: Soldano, Germán J. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina.Fil: Fraire Juan A. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Fil: Fraire Juan A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Estudios Avanzados en ingeniería y Tecnología; Argentina.Fil: Fraire Juan A. Saarland University. Saarland Informatics Campus; Saarbrücken, Germany.Fil: Finochietto, Jorge M. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Fil: Finochietto, Jorge M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Estudios Avanzados en ingeniería y Tecnología; Argentina.Fil: Quiroga; Rodrigo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas; Argentina.Fil: Quiroga; Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina

    Structure stability of free copper nanoclusters: FSA-DFT Cubuilding and FDM-XANES study

    Get PDF
    We present ab initio simulations of X-ray Absorption Near-Edge Structure (XANES) spectra, performed on model clusters built by fast simulated annealing and optimized by Density Functional Theory (DFT) minimization. As is known, larger stability of Cu clusters with 20 atoms was found in comparison with those with 19 and 21 atoms. Based on this knowledge, we show the sensitivity of the XANES technique on the number of atoms n, (c.a 20), and on the morphology of the Cun nanoclusters. For this study we used both L3 and K edges and found the former more sensitive. In addition, in the case of the K XANES edge, we carry out the simulations using four different methods, to observe their performance in arrays of a few atoms. Even more, we obtain a good agreement between our results and previous predictions on the HOMO-LUMO gaps for these systems.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Cyanide-modified Pt(111) : structure, stability and hydrogen adsorption

    Get PDF
    A.C. acknowledges the support of the DGI (Spanish Ministry of Science and Innovation) through Project CTQ2009-07017. W.S. acknowledges financial support by the Deutsche Forschungsgemeinschaft under Schm 344/40-1, Schm 344/34-1.2 and FOR 1376. W.S. and P.Q. thank DFG-CONICET International Cooperation and CONICET for continued support. E.P.M.L. and M.Z.-M. wish to acknowledge CONICET PIP: 112-200801-000983, Secyt UNC, Program BID (PICT 2006N 946), and PME: 2006-01581 for financial support. P.Q. acknowledges PICT 0737-2008. A generous grant of computing time from the Baden-Wuerttemberg grid is gratefully acknowledged. M.E.-E. acknowledges an FPI fellowship from the Spanish Ministry of Science and Innovation and an accommodation grant at the Residencia de Estudiantes from the Madrid City Council.Peer reviewedPostprin

    Orbital overlap effects in electron transfer reactions across a metal nanowire/electrolyte solution interface

    Get PDF
    In this paper, we report on calculations of the orbital overlap between Fe(III) and Cr(III) aquacomplexes and different electrode surfaces: Cu(111), Ag (111), Au(111), Pt(111), and corresponding monatomic wires. The electronic structure of the monocrystalline surfaces and nanowires are described in terms of the electronic spillover and density of electronic states at the Fermi level obtained from periodic density functional theory (DFT) calculations. The transmission coefficients (κ) characterizing the first stage of outer-sphere electron transfer for the reduction of aquacomplexes are calculated on the basis of Landau–Zener theory as a function of electrode–reactant separation; the electronic transmission coefficients for the [Cr(H2O)6]3+/2+ redox couple were found to be smaller than those for [Fe(H2O)6]3+/2+. Two different intervals can be clearly distinguished for Cu, Au and Pt: “a catalytic region”, where κ(wire) > κ(Me slab) and “an inhibition region”, where κ(wire) < κ(Me slab). A similar behavior exhibits the coupling constant estimated for a hydrogen atom adsorbed at the Au(111) surface and the Au monatomic wire. These effects originate from some specific features of electronic density profile for metal nanowires: at short distances the electronic density of nanowires is higher compared with the (111) metal surfaces, while at larger separations it decreases more sharply.Fil: Nazmutdinov, Renat R.. Kazan National Research Technological University; RusiaFil: Berezin, Alexander S.. Kazan National Research Technological University; RusiaFil: Soldano, Germán. Universitat Ulm; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Schmickler, Wolfgang. Universitat Ulm; Alemani

    Soft or Hard? Investigating the Deformation Mechanisms of Au-Pd and Pd Nanocubes under Compression: An Experimental and Molecular Dynamics Study

    No full text
    In the search for new mechanisms to improve and control the mechanical properties of nanostructures, the idea of tuning the strength through composition is appealing because of the extensive experimental availability of nanoparticles with segregated configurations, such as core-shell nanoparticles. However, not much is known about the deformation mechanism of these types of systems because of the lack of correlation between theoretical predictions and experimental observations. In this work, we investigate the atomistic mechanical response of Au-Pd core-shell and Pd nanocubes under indentation, using molecular dynamics simulations. These results are compared to experimental observations of in situ transmission electron microscopy (TEM) nanoindentation on similar nanoparticles. Our study resolves the nucleation of Shockley partial dislocations and their propagation in Au-Pd core-shell and single-crystalline Pd nanocubes. In the latter, Shockley partial dislocations originate at the cube corners and create stacking faults that propagate across the nanoparticle, creating the so-called V-shaped defects. In contrast, in Au-Pd core-shell nanocubes, nucleation starts at the semicoherent Au-Pd interface, where a network of misfits acts as dislocation storage, reducing the nanocube's strength. We explore the effect of the core size and its function as a dislocation barrier for nanocubes of smaller sizes. Additionally, strain hardening was observed as the core size increased and, for the case of the largest core (Au30Pd70) at strain values above 20%, where a complex network of different types of dislocations, including sessile dislocations, is observed. Our results suggest a clear agreement between simulation and experiments, which points to a promising field in which combining two or more metals in a core-shell configuration can be used to tune and control the mechanical properties at the nanoscale.Fil: de la Rosa Abad, Juan Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Londoño Calderon, Alejandra. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Bringa, Eduardo Marcial. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Soldano, Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Paz, Sergio Alexis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Santiago, Ulises. University Of Texas At San Antonio. Department Of Physics And Astronomy.; Estados UnidosFil: Mejía Rosales, Sergio J.. Universidad Autonoma de Nuevo Leon.; MéxicoFil: José Yacamán, Miguel. Northern Arizona University.; Estados UnidosFil: Mariscal, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentin
    corecore