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Abstract 

 

In this communication we report on calculations of the orbital overlap between Fe(III) and 

Cr(III) aquacomplexes  and different electrode surfaces: Cu(111), Ag (111), Au(111), Pt(111), and 

corresponding monoatomic wires. The electronic structure of the monocrystalline surfaces and 

nanowires are described in terms of the electronic spillover and density of electronic states at the 

Fermi level obtained from periodic Density Functional Theory (DFT) calculations. The transmission 

coefficients (κ ) characterizing the first stage of outer-sphere electron transfer for the reduction of  

aquacomplexes are calculated on the basis of Landau-Zener theory as a function of  electrode – 

reactant separation; the electronic transmission coefficients for the [Cr(H2O)6]
3+/2+

  redox couple 

were found to  be  smaller than those for [Fe(H2O)6]
3+/2+

.  Two different intervals can be clearly 

distinguished for Cu, Au and Pt: “a catalytic region”, where κ (wire) > κ (Me slab) and “an 

inhibition region”, where κ (wire) < κ (Me slab). A similar behaviour exhibits the coupling constant 

estimated for a hydrogen atom adsorbed at the Au(111) surface and the Au monoatomic wire. These 

effects originate from some specific features of electronic density profile for metal nanowires: at 

short distances the electronic density of nanowires is higher compared with the (111) metal surfaces, 

while at larger separations it decreases more sharply. 

 

Key words: metal nanowire; electron transfer; electronic transmission coefficient; density functional 

theory; Au, Cu, Ag, Pt electrodes; Cr(III) and Fe(III) aquacomplexes.  
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I. Introduction 

Conducting nanowires and nanotubes in contact with an electrolyte solution can be regarded 

as promising, important and challenging electrochemical systems. Recently, a few attempts have 

been made to describe theoretically the structure of such interfaces
1-5

. The electric double layer 

(EDL) at a conducting nanocylinder/electrolyte solution interface was modeled by using Gouy-

Chapmen theory
1,2,3

 and classical molecular dynamics simulations
4,5

. The charge transfer across 

nanowire (nanotube)/aqueous solution interface was addressed in Refs.
3, 6-9

 on the basis of quantum 

mechanical theory
10, 11

. Some qualitatively interesting features were predicted for the [Fe(CN)6]
3-/4-

 

redox couple
3
 (electrostatic catalysis, inverted Arrhenius plot) and the reduction of peroxodisulphate 

anion
9
 (disappearance of a “pit” in current – voltage curves observed in diluted supporting electrolyte 

solutions). Sizable catalytic effects were predicted when considering the hydrogen evolution on 

different metal nanowires
7, 8

. At the same time the orbital overlap between reactant and electrode of 

nanosize was investigated only in the strong coupling limit (adiabatic electron transfer)
7, 8

. The 

electronic transmission coefficient for redox couples in non-adiabatic (weak coupling) limit at a 

nanowire (nanotube) electrodes have not been calculated systematically or properly analyzed; the 

role of the electrode material was not elucidated as well. In this work we address the orbital overlap 

effect for Fe
3+/2+

 and Cr
3+/2+

 redox couples for four different metal electrode (Ag, Au, Cu and Pt) 

using model approaches developed previously. The metals are represented by both (111) faces of 

monocrystals and monoatomic wires.  Electron transfer for these redox systems has outer-sphere 

character and is expected to be non-adiabatic. As reduction (oxidation) proceeds in this case at low 

electrode overvoltages (in contrast to [Fe(CN)6]
3-/4- 

and the peroxodisulphate anion), the electrical 

double layer effects do not play an important role and can be neglected. These features of the Fe
3+/2+

 

and Cr
3+/2+

 redox couples allow considering them as a convenient model system.    

This paper is organized as follows: Details of model calculations are described in Section II 

and the results are reported in Section III. Some concluding remarks are listed in Section IV. 
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II. Model and computational details   

The electronic transmission coefficient ( eκ ) was treated in the framework of the Landau-

Zener theory
10

: 

 

1 exp( 2 )e eκ πγ= − − ,          (1) 

 

where 2 eπγ  is the Landau-Zener (LZ) factor.           

 Eq.1 is true for two crossing free energy surfaces along the reaction coordinate when 

considering only direct trajectories. If both direct and backward trajectories are addressed, one must 

take into account the denominator
1

1 exp( 2 )
2

eπγ− − . The latter, strictly speaking is not correct for a 

heterogeneous electron transfer, because in this case we have to deal with a random rambling 

through a network formed by the crossing points of a manifold of free energy surfaces
11

. That is why 

a simple equation (1) was used in further calculations.       

When intramolecular reorganization can be described in terms of linear response, 
eγ  at small 

electrode overvoltages is calculated as follows: 

 

2
( )

2

eF B
e

eff

Ek Tρ ε π
γ

ω λ
∆ =  

 h
,         (2) 

 

where eE∆  is the resonance splitting of the reaction free energy surfaces; λ  is the total 

reorganization energy; effω  is the effective frequency of polar medium (10
13 

Hz)
10

; ( )Fρ ε  is the 

density of electronic states of electrode at the Fermi level. 

 In eq.(2) the LZ factor is directly proportional to the density of electronic states but this is 

true only in the region of small electrode – reactant electronic coupling (non-adiabatic limit of 

electron transfer). So far no exact solution is known for the wide region of electronic coupling, 
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although some useful results can be obtained numerically using Monte Carlo simulations
11

 (see also 

Supporting Information, Fig.1S).    

 Below we dwell upon a quantum chemical model to calculate
eE∆ . Let us consider the 

electron exchange between a metal electrode and a reactant. If the electron is located on the metal 

electrode (initial state) the total Hamiltonian can be represented as follows,  

 

(0)ˆ ˆ ˆ
i fH H V= + ,          (3) 

 

and (0)ˆ
iH  is the Hamiltonian of the electron in initial state:  

 

(0)ˆ
i i i iH ψ εψ= ,           (4) 

 

where iψ  is a one-electron wave function of the metal; the eigenvalue iε  is the electron energy in 

initial state.  

The operator ˆ
f

V  in eq.3 describes the influence of acceptor (reactant) on the electron in initial 

state. On the contrary, if the electron is located on the reactant (final state) the total Hamiltonian 

takes the form:  

 

(0)ˆ ˆ ˆ
f i

H H V= +  ,          (5) 

 

and 
(0)ˆ
f

H  is the Hamiltonian of the electron in final state: 

 

(0)ˆ
f f f fH ψ ε ψ= ,          (6) 
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 5

where fψ  is a one-electron wave function of the reduced reactant; the eigenvalue fε  is the electron 

energy in final state. 

In this case the operator ˆ
iV  describes the influence of donor (metal electrode). Then we have 

 

2

ˆ ˆ

2 1

i f i i i fe

i f

H HE ψ ψ ψ ψ ψ ψ

ψ ψ

−∆
=

−
,       (7) 

 

where ˆ
i f
Hψ ψ = ˆ

i fH dψ ψ Ω∫ , ˆ
i i
Hψ ψ = ˆ

i iH dψ ψ Ω∫  and 
i f

ψ ψ = i idψψ Ω∫ . 

One can write neglecting the 
2

i f
ψ ψ  term

♣
:  

 

2

eE∆ ˆ ˆ
i f i i i f
H Hψ ψ ψ ψ ψ ψ= − .       (8) 

 

Due to the Hermitian character of the electronic Hamiltonian and normalization conditions of 

the wave functions iψ  and fψ  the following equations are to be fulfilled: 

 

ˆ ˆ
i f f i
H Hψ ψ ψ ψ=          (9) 

and 

1
i i f f

ψ ψ ψ ψ= = .         (10) 

 

Then we can recast eq.8 in the form
#
 

 

                                                

♣
 As iψ  is normalized to the metal volume MeV ,  the 

2

i f
ψ ψ  term is proportional to 1/ MeV and, therefore, tend to 

zero for a semi-infinite metal (infinite metal wire) 

# It is evident from eq.14 that ˆ
i f fVψ ψ = ˆ

f f iVψ ψ . 
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 6

(0) (0)ˆ ˆ ˆ ˆ
2

e
f i i f f i i i i i f i f i i f

E
H V H Vψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

∆
= + − − = 

ˆ ˆ
i i f f f i i i f i f i i f

V Vε ψ ψ ψ ψ ε ψ ψ ψ ψ ψ ψ+ − − = 

ˆ ˆ
i f f i f i i f
V Vψ ψ ψ ψ ψ ψ− .        (11) 

 

In calculations of eκ  for the heterogeneous electron transfer, on the other hand, we have to 

deal with the product 

2

( )
2

e
F

E
ρ ε

∆ 
 
 

(see eq.2): 

 

2
2

( ) ( )
2

e
F F i f f

E
Vρ ε ρ ε ψ ψ

∆  = − 
 

2 ( )
F i f f i f i i f

V Vρ ε ψ ψ ψ ψ ψ ψ + 

( )2

( )F i f i i fVρ ε ψ ψ ψ ψ .        (12) 

 

Note that the wave function iψ  is normalized to the metal volume MeV . For a semi-infinite 

metal (infinite metal wire) both ( )Fρ ε  and MeV  tend to infinity; their ratio ( ) /F MeVρ ε , however, is a 

finite quantity which is assumed in eq.2. It is easy to see that the second and the third terms in eq.12 

are vanishing (they are proportional to 2( ) /F MeVρ ε  and 3( ) /F MeVρ ε , respectively, see also Ref.
22

). 

Finally we have  

 

 
2

e
if i f f

E
V Vψ ψ

∆
= = .           (13) 

 

It was already mentioned above that the matrix element ifV  can be calculated in the 

framework of the perturbation theory. In the Hartree-Fock theory the perturbation operator fV  

consists of Coulomb and exchange terms.  The last term is noticeable only for short metal – reactant 
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 7

separations and can be neglected. The Coulomb term can be defined as a molecular potential induced 

by the reactant in oxidized state
&

: 

 

( )
j

f

j j

q
V r

R r
=

−
∑r

r r ,          (14) 

 

where  jq  are the atomic charges calculated using the ChelpG scheme
12

; the radius-vectors j
R
r

 

describe the position of the atoms.  

Models to calculate the electronic coupling matrix element for electron transfer across 

metal/liquid and semi-conductor/liquid interfaces were developed previously by Marcus et al
13-15

.    

The calculations of the geometry and electronic structure of [Fe(H2O)6]
3+/2+

 and 

[Cr(H2O)6]
3+/2+ 

were performed at the DFT level with the hybrid functional B3LYP as implemented 

in the Gaussian 03 program suite
16

. A basis set of DZ quality was employed to describe the valence 

electrons of Fe atom, whereas the effect of inner electrons was included in a relativistic Effective 

Core Potential (ECP) developed by Hay and Wadt (LanL2)
16

. The standard 6-31g basis set 

augmented by polarization functions was used to describe the electrons in the O and H atoms. The 

unrestricted DFT formalism was employed to describe the open-shell systems. The geometry of the 

aquacomplexes in oxidized and reduced states was optimized without symmetry restrictions. The 

periodical DFT calculations have been performed with the Dacapo code
17

 for the Ag, Au, Cu and Pt 

electrodes in two different configurations: Me(111) metal surface (six-layer slab) and a monoatomic 

wire. The Brillouin zone integration was done using the Monkhorst-Pack grid
18

; the PW91-GGA 

approximation to the exchange-correlation energy was employed
19

. Nuclei and core electrons have 

been described by ultrasoft pseudopotentials
20

. Other pertinent details of the calculations can be 

found in Refs.
7, 8

. For both the Me(111) and the Me monoatomic wire we calculated the density of 

electronic states ( )ρ ε  and the electronic density profile along the surface normal n(x) (averaged over 

                                                
& For the sake of simplicity we did not take into account the screening of the molecular potential by fast solvent modes, 

although this effect can be readily addressed 
9
. 
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 8

the surface). Outside the metal (i.e. in the most important overlap region) the electronic density was 

fitted by an exponential decay: 

 

2

0( ) ( ) exp( )in x x n xψ β= = − .        (15) 

  

Then the effective one-electron orbital of a metal electrode can be obtained directly from 

eq.15.  This way to construct the orbital of a metal electrode resembles to some extent an approach 

developed previously in the work
21

.  In calculations of the matrix element ifV  the highest occupied 

β -molecular orbital of  [Fe(H2O)6]
2+

 and α - molecular orbital of [Cr(H2O)6]
2+ 

 were used for fψ ;  

the geometry of the aquacomplexes was fixed at initial (oxidized) state in an assumed rough Condon 

approximation
10

).  

 In the present work we have improved the method for the calculation of ifV  developed 

previously for a reactant near a plain electrode surface (see pertinent details in Refs.
9, 22, 23

 and 

adapted it to electrodes of cylindrical form with arbitrary radius a. The integration was performed 

over the 3D half-space ( x ≥ 0) for the Me(111) surfaces and over the whole space ( x ≥  a) for the 

monoatomic wires. The conditions x = 0 and x = a correspond to the electrode “edge”; the atomic 

radii of the metals were taken as the a values in our calculations. The influence of the electronic in 

the half-space x ≤  0 (plane electrodes) and 0 ≤ x <  a (cylinders) was found to be negligibly small. 

The numerical calculations were performed using an original code written with the program package 

“Matlab R2009b”.       

 

III. Results and discussion 

Parameters characterizing the electronic structure of metal electrodes are compiled in the 

Table. It can be seen that the parameter describing the electronic density decay ( β ) increases in the 

row Pt < Ag =Au < Cu; our results for Ag(111) and Au(111)  predict a more noticeable decay for 
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 9

electronic density as predicted from the jellium model
21

, although the differences are not large. 

The β  values calculated for the wires exceed those obtained for the Me(111) surface, i.e electronic 

density near the monoatomic wires decays more strongly; partially, this is caused by a geometric 

effect: cylindrical geometry on the wires compared to one-dimensional decay on the plane surfaces.  

In contrast, for all metals the parameter 
0n  describing electronic density at the surface “edge” is 

significantly smaller for the slabs than for the wires. The density of electronic states at the Fermi 

level for Pt was calculated by Gosavi and Marcus
14, 15

 as 7.6 times as larger as for Au. The ratio of 

( )Fρ ε  for the same metals found by us (6.2) is a good agreement with this conclusion (see Table), 

but for both metals our values are significantly smaller. For Cu and Au the ( )Fρ ε  values 

characterizing the metal wires noticeably exceed those for the metal slabs. Pt and Ag reveal nearly 

the same ( )Fρ ε  both for Me(111) and for the wires. Such conspicuous features of the electronic 

structure of the metals slabs and wires should affect the orbital overlap effects and hence electron 

transfer kinetics. 

 

Table. Density of electronic states at the Fermi level
*
, ( )Fρ ε  and two parameters describing the 

exponential fit of the electronic density (see eq.15) calculated for the Me(111) surfaces and 

nonoatomic metal wires (Me=Ag, Au, Cu, Pt).      

 Ag Au Cu Pt 

( )Fρ ε  /eV
-1

 atom
-1 Me(111) 0.148 0.165 (0.29)

** 
0.175 1.03 (2.2)

** 

wire 0.2 0.51 0.5 0.8 

β  /a.u.
-1

 Me(111) 1.396 (1.23)
***

  1.39 (1.22)
*** 

1.842 1.28 

wire 1.426 1.738 2.303 1.594 

0n
****

 /a.u.
-3

 Me(111) 0.09 0.102 0.146 0.081 

wire 0.217 0.427 0.63 0.306 

*
normalized to the number of atoms in the unit cell: 6 atoms for Me(111) and 1 atom for the mono-atomic wire.  

**
calculated in Refs.

14, 15
 using a tight binding approach and the extended Hückel method.   

***calculated on the basis of the jellium model for the metal surface24. 

****
normalized to the number of electrons in the unit cell. 
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 10

The total spin numbers (S) are 5/2 and 2 for [Fe(H2O)6]
3+ 

and [Fe(H2O)6]
3+

, respectively. In 

turn, S = 3/2 and 2 for the Cr(III) and Cr(II) aquacomplexes. The corrsponding <S
2
> values were 

computed to be 8.7553 (6.0033) and 3.7593(6.0035) for the Fe(III)(Fe(II)) and Cr(III)(Cr(II)) 

aquacomplexes. Resting on the results of quantum chemical calculations we have estimated the 

intramolecular contributions to the total reorganization energy, inλ  = 0.34 eV (Fe
3+/2+

) and 0.77 eV 

(Cr
3+/2+

), which are close to the estimates reported previously by Rosso and Rustad
25

. When 

calculating the electronic transmission coefficient we used for simplicity the inλ  values by averaging 

the intramolecular reorganization energies for reduction and oxidation processes
26

. The 

reorganization of coordination shell for Cr
3+/2+

 is more significant due to the Jahn-Teller distortions 

in the [Cr(H2O)6]
2+

 aquacomplex. The solvent reorganization energy was calculated to be 0.87 eV at 

x =0.65 nm (see pertinent technical details in Ref.
23

).  

Three different orientations of the Fe(III) ad Cr(III) aquacomplexes relative to the metal (111) 

surface and the wires were considered: (a) “apex”, (b) “face” and (c, d) “ridge” (see Fig.1). The 

orientation (a) results in a very small orbital overlap due to symmetry reasons and was excluded from 

further analysis. The orientations (b) and (c) are characterized nearly by the same orbital overlap. In 

what follows we report the results only for the “ridge” orientation. Since for the both aquacomplexes 

the acceptor quasi t2g and eg molecular orbitals are nearly degenerated, in general they must be 

considered with some averaging technique in calculations of kinetic parameters. This issue was 

investigated in detail for [Fe(H2O)6]
3+

 (see Supporting Information). For all three orientations only 

one half-occupied t2g orbital of the aquacomplex plays the most important role in the electronic 

coupling and, therefore, mainly contributes to eκ (Fig.2S). The contributions from the other two t2g 

orbitals are significantly smaller and can be neglected.    

The electronic transmission coefficients as a function of the reactant – metal slab separation 

x  are plotted in Fig.2a. It can be seen that for all four metals electron transfer to the [Fe(H2O)6]
3+

 

aquacomplex  is non-adiabatic at  x ≥  0.65 nm. This distance of the closest approach presumes a 

monolayer of solvent molecules between the aquacomplex and the electrode surface. Previously the  
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          (a)                                                          (b)                                                       (c)                   

 

 

 

 

 

 

 

 

 

 

 

                                                                          (d) 

 

Figure 1.  Selected orientations of the Fe(III) and Cr(III) aquacomplexes at the metal (111) surfaces: 

“apex”(a), “face” (b), “ridge” (c) and “ridge” at the monoatomic metal wires (d). 

 

non-adiabatic character of electron transfer for a Fe
3+/2+

 redox couple at the Au(111), Au(100) and 

Au(100) surfaces covered with a monolayer of Cu atoms was established in Refs.
27, 28

, where the 
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 12

matrix element ifV  was calculated  as a function of distance on the basis of the extended Hückel 

method.  We found that in the non-adiabatic regime the nature of the metal significantly affects the 

electron transfer rate which leads to the following series of decreasing κ  values: Pt > Au=Ag > Cu.  

0.65 0.70 0.75 0.80 0.85
1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

lo
g

(κ
)

x, nm

 Ag

 Au

 Cu

 Pt

 

         (a) 

0.6 0.7 0.8
4

5

6

κ(
F

e3
+

/2
+
)/
κ(

C
r3

+
/2

+
)

x, nm

 Ag

 Au

 Cu

 Pt

 

           (b)  

Figure 2.  Electronic transmission coefficient vs separation calculated for reaction [Fe(H2O)6]
3+ 

+ e  

= [Fe(H2O)6]
2+

 at the (111) metal surfaces (a); ratio of electronic transmission coefficients vs 

separation characterizing redox couples [Fe(H2O)6]
3+/2+

 and [Cr(H2O)6]
3+/2+

 at the (111) metal 

surfaces (b) 
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Available experimental data on the influence of the electrode material on the rate constant (k) of the 

reduction (oxidation) of Fe
2+/2+ 

 in aqueous solutions are contradictory. Bockris et al
29

 have reported 

that k(Pt) > k(Au), while according to Angell and Dickinson results
30

 the rate constants for the both 

electrodes are nearly the same. Figure 2b demonstrates the ratio of electronic transmission 

coefficients for Fe
3+/2+

 and  Cr
3+/2+

 redox pairs for different electrodes. Electron transfer to 

[Cr(H2O)6]
3+

 was found to be even more non-adiabatic as compared to Fe(III) aquacomplex; this 

could be attributed to the less diffuse character of the [Cr(H2O)6]
3+

 acceptor orbital. Thus, our results 

agree qualitatively with experimental data for Cr
3+/2+ 

obtained by Weaver et al.
31

: k(Pt) > k(Au) > 

k(Ag). Note that the slope of the log(κ ) vs x dependencies is steeper as compared with results 

obtained for other redox couples attached to the Au electrode through thiol tails of various lengths 

(see, for example, Refs.
32-34

). This difference might result mainly from a simplified construction of 

the effective wave function of a metal electrode from the total electronic density; the main 

contribution to the density comes from electrons of the d- band which are less diffusive than the 

electrons of sp-band. It is of worth to mention here an interesting finding by Gosavi and Marcus
14, 15.

: 

because of competing roles of d- and sp- metal electrons, in general the rate constant is a sum of 

channels for each type of electrons, and the rate constant is not proportional to the total ( )Fρ ε , as 

illustrated specifically for Pt and Au.                 

The difference in orbital overlap effects between two metal slabs and monoatomic wires for 

the both redox pairs is shown in Figure 3. Two intervals of x can be distinguished for Cu, Au and Pt: 

“a catalytic” region, where κ (wire) > κ (Me slab) and “an inhibition” region, where κ (wire) < 

κ (Me slab). The stronger the orbital overlap, the more noticeable is the catalytic properties of the 

metal wires. For the silver nano-wire a slight catalytic effect is observed, which practically does not 

depend on distance.  As the κ values for [Cr(H2O)6]
3+/2+

  were found to be smaller than for 

[Fe(H2O)6]
3+/2+

,  the metal wires induce mostly “inhibition” effect for Cr
3+/2+ 

redox couple (Fig.3b).   
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Figure 3.   Ratio of electronic transmission coefficients vs separation characterizing redox couple 

[Fe(H2O)6]
3+/2+

 (a) and [Cr(H2O)6]
3+/2+

 (b) at the (111) metal surfaces and at the monoatomic wires; 

point *x  separates “catalytic” (κ (wire) > κ (Me slab)) and “inhibition” (κ (wire) < κ (Me slab)) 

regions.    
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To reinforce this important conclusion, we also calculated the squared matrix element 

(coupling constant) extracted from the computational data reported in Ref.
7
 on the adsorption of a 

hydrogen atom at the Au(111) surface (hollow site) and at the monoatomic Au wire, where the 

Volmer step of hydrogen evolution reaction was investigated. Note that the coupling constant was 

estimated indirectly by fitting the electronic density of states projected to the adsorbed H atom. The 

results are exhibited in Figure 4. The catalytic activity of the metal wire at short distances can be 

clearly distinguished also for significantly adiabatic electron transfer (strong coupling limit). 

However, starting from a certain distance the catalytic properties of the metal wire disappear and the 

“inhibition” region takes place.     

0.00 0.05 0.10 0.15

1

2

3

4

V
if

2
, 

eV
2

x, nm

 Au(111)

 monoatomic wire

 

 

Figure 4.   Coupling parameter vs distance calculated for the adsorption of a hydrogen atom on the 

Au(111) surface (hollow site) and a monoatomic golden wire; x is calculated from the Me – H 

equilibrium distance in adsorbed state.   

 

IV. Concluding remarks  

 We have explored the orbital overlap effect on outer-sphere electron transfer across  Me(111) 

and monoatomic metal wire/electrolyte solution interface. The Cu, Au and Pt wires (except Ag) 
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reveal catalytic activity at short distances and “inhibition” region for larger separations. Our method 

is based on a quantum mechanical theory combined with DFT for periodic systems and molecules. 

Although some molecular level details of the reaction layer were neglected (first of all, microscopic 

description of solvent molecules), the approach seems to be robust and makes it possible to predict 

some effects of qualitative nature. We considered the limiting case (the monoatomic metal wires), 

however, our analysis can be readily extended to cylindrical wires of arbitrary diameter; simple 

models based on the free electron gas concept can be employed to develop interpolation schemes 

(see, for example, Ref.
35

).  

 A shortcoming of the present work is obviously a possible experimental verification of the 

model predictions. Although a number of various electrochemical systems of nanosize were already 

probed using different experimental technique (see, e.g. Refs. cited in works
3, 9

), the authors 

investigated the averaged properties of arrays of carbon nanotubes and metal nanowires. Reliable 

kinetic measurements on a single nanosize electrode remain still an exceedingly complicated and 

challenging problem. Nevertheless, recent experimental results reported by the authors of Refs.
36, 37

 

look inspiring.  In these works some electron transfer reactions at individual metal nanowires and 

single –walled carbon nanotubes in electrolyte environment were studied using voltammetry. The 

thickness of nanowires in the experiments
36, 37

 ranged in the interval 32 – 110 nm but we believe that 

relevant data obtained for metal wires of smaller diameter will be available in the nearest future. 

Anyway possible applications of catalysis on metal nanowires in practice are very tempting.           
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