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COVID‑19 mitigation by digital 
contact tracing and contact 
prevention (app‑based social 
exposure warnings)
Germán J. Soldano1,3, Juan A. Fraire2,4,5, Jorge M. Finochietto2,4 & Rodrigo Quiroga1,3*

A plethora of measures are being combined in the attempt to reduce SARS-CoV-2 spread. Due to its 
sustainability, contact tracing is one of the most frequently applied interventions worldwide, albeit 
with mixed results. We evaluate the performance of digital contact tracing for different infection 
detection rates and response time delays. We also introduce and analyze a novel strategy we call 
contact prevention, which emits high exposure warnings to smartphone users according to Bluetooth-
based contact counting. We model the effect of both strategies on transmission dynamics in SERIA, 
an agent-based simulation platform that implements population-dependent statistical distributions. 
Results show that contact prevention remains effective in scenarios with high diagnostic/response 
time delays and low infection detection rates, which greatly impair the effect of traditional contact 
tracing strategies. Contact prevention could play a significant role in pandemic mitigation, especially 
in developing countries where diagnostic and tracing capabilities are inadequate. Contact prevention 
could thus sustainably reduce the propagation of respiratory viruses while relying on available 
technology, respecting data privacy, and most importantly, promoting community-based awareness 
and social responsibility. Depending on infection detection and app adoption rates, applying a 
combination of digital contact tracing and contact prevention could reduce pandemic-related 
mortality by 20–56%.

The COVID-19 pandemic has challenged health authorities around the world since December 2019. Many gov-
ernments immediately implemented physical distancing and self-isolation measures, ranging from simple “stay-
at-home” recommendations to strict lock-downs1. Although straightforward, fast and effective in controlling 
the propagation of the virus, rigorous lock-downs are emergency measures which imply profound economical 
and social consequences, and cannot be sustained over long periods of time, specially in underdeveloped and 
developing countries. Sustainable and widely applied nonpharmaceutical interventions such as effectively com-
municating prevention measures, cancellation of large-scale public gatherings, widespread/mandatory mask 
utilization, and travel restrictions have proved to be insufficient to contain viral spread in many countries2.

In this context, Contact Tracing (CT) has been extensively used to attempt to control outbreaks3 by identifying 
and isolating close contacts of diagnosed patients as soon as possible, to prevent further transmission. However, 
the efficiency of the approach in diminishing COVID-19 propagation strictly depends on how quickly, broadly, 
and accurately the contact tracing process is4. In particular, it is crucial to minimize delays in diagnostics, contact 
determination and detection, as well as the subsequent isolation of all possibly infected individuals5. This argues 
in favor of so-called digital CT, where smartphones automatically store and report contact information3 using 
mainly Bluetooth Low Energy (BLE) technology for proximity detection between devices6. The effectiveness of 
CT has been enhanced by embracing this technology in several countries7–9, although not free of data privacy 
concerns, among other controversies10,11.

Both manual and digital CT evidenced a common disadvantage intrinsic to the very nature of this reactive 
strategy: it depends largely on the percentage of infected individuals which are successfully and quickly diagnosed 
with COVID-19. However, this issue has been scarcely documented and noted by the community, even though 
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infection detection rates are estimated to be below 12% for most countries, and 16% or less even for developed 
countries such as the United States of America, Canada, China, Sweden and The United Kingdom12. Accord-
ingly, an analysis for the city of New York estimates an Infection Detection Rate (IDR) of 15–20%13. Undetected 
infections are a key characteristic of the COVID-19 pandemic that severely impacts CT strategies, as no contact 
tracing is possible without diagnosis, which is most generally triggered by symptom onset. We argue this CT 
limitation is the main reason for observing satisfactory results only when combined with other policies such as 
detection and isolation via enhanced/random testing or contact avoidance via household quarantine14.

In this work, we analyze the impact of different IDRs and time delays on the effectiveness of CT. With the 
aim of reducing the dependency on these factors, while improving data privacy, we introduce community-based 
Contact Prevention (CP). CP is a novel strategy that attempts to diminish viral transmission by warning users 
from infection risks due to their current social activity. To quantitatively assess CT and CP in realistic COVID-
19 scenarios, a detailed COVID-19 simulation model based on agents, which we named SERIA, is presented. 
This model leverages several COVID-19 statistical distributions such as social and household contact profiles, 
IDRs, population age, viral latency period, and fatality rates. We then evaluate and compare the effect of CP and 
CT strategies on final epidemic size (FES) and mortality (deceased agents as a percentage of the total simulated 
population).

Methods
SERIA is a Monte Carlo agent-based model that reproduces the essential aspects of social and household con-
tacts in the context of COVID-19 (SERIA is open-source and publicly available at https://​bitbu​cket.​org/​juanf​
raire/​seria). The model includes all agents of the well-known SEIR models15 and adds an asymptomatic agent, 
a fundamental component of the COVID-19 pandemic16. We have used SERIA to simulate a population that 
has common mitigation measures in place, such as bans on large-scale gatherings, mandatory face masks, and 
limitations on the size of social gatherings.

To this end, we have parameterized the amount of daily close contacts, as well as the probability of transmis-
sion upon their occurrence, so that SERIA averages an effective R of 1.5. Based on this scenario, we evaluate 
the theoretical performance of CT and CP in terms of FES and mortality rate, according to varying degrees of 
diagnostic/isolation delays, app adoption and IDRs. Results presented here for each set of parameters correspond 
to the average of 60 simulations of 1 × 105 agents. Social and household transmission are handled separately. 
Essential aspects of the model are summarized below; detailed explanations, algorithms and validation analysis 
are given in the Supplementary Information.

Agents.   We use age as the main defining feature for agents, since it affects all other agent features. For 
instance, lethality amongst infected, as given by the Infection Fatality Rate (IFR) (see Fig. S4), and social contact 
patterns S7. Age is assigned randomly to each agent following a probability distribution given by Page , shown 
in Fig. 1. This function was fitted from the latest Argentinian census conducted in 2011, but could be adjusted 
to any other population age. In SERIA, we divide infected agents into two categories, symptomatic (poly-symp-
tomatic, which present multiple symptoms compatible with COVID-19, and are therefore subsequently tested) 
and asymptomatic (whether truly asymptomatic or oligosymptomatic, which present none or mild symptoms, 
and thus are not tested). Symptomatic agents are assumed to self-isolate on symptom onset. We also assume all 
agents have equal transmission probability upon close contact with a susceptible agent. While some meta-anal-
ysis studies have found lower secondary attack rates for asymptomatic subjects17, a recent study found similar 
viral load and infectiousness for PAMS (pre-symptomatic, asymptomatic, and mildly-symptomatic) subjects18, 

Figure 1.   Age distribution function Page and IDR as a function of age for the three scenarios considered in this 
work: one in which half of symptomatic cases are detected (IDR1), one in which all of them are (IDR2), and one 
in which all the symptomatic and 15% of the asymptomatic/oligosymptomatic cases (for each age) are detected 
(IDR3). Ref. 1:13 and Ref. 2:20.

https://bitbucket.org/juanfraire/seria
https://bitbucket.org/juanfraire/seria
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and no significant differences have been found in some recent contact tracing studies19. Also, the same distribu-
tion of symptomatic and asymptomatic infections is used in all simulations. This distribution depends on agent 
age and coincides with the function that describes IDR2 in Fig. 1 (estimated from Polettis results20). As observed 
in the graph, the probability of symptomatic infection increases with age.

Time periods.   Once infected, agents sequentially transit the latency and infectious periods, being able to 
spread the virus only in the latter. The length of the latency period is assigned randomly to each agent, obeying 
a log-normal distribution that varies between 1 and 20 days21, with a median of 4 days22. The infectious period 
begins when the latency period ends, with a fixed length of 14 days. Transmissibility was assumed to correlate 
with viral load23 and is modeled as a log-normal distribution following experimental determination of viral load 
kinetics24. Transmissibility peaks at day 1.5 post-latency period (before symptom onset)25 and then decreases 
rapidly (see function f3 in Fig. S5). Functions controlling these periods are given in Fig. S5.

Households.   Household sizes from 1 to 8 are built associating agents so that a given distribution of house-
hold sizes and age classes per household is fulfilled. Again, the distribution corresponds to the Argentinian cen-
sus conducted in 2011. The proportion of homes with 1 to 8 + members are: 18%, 23%, 20%, 18%, 10%, 6%, 2% 
and 3%, correspondingly. Children, adults and elderly distributions in households are given in Fig. S6.

Household interactions.   Household interactions are modeled by simulating daily close contacts between 
all household members.This results in household cohabitants having an infection probability which is 2.4 times 
higher than for social contacts.

Social interactions.   Three fundamental aspects emerge from experimentally observed social contact 
patterns26: (i) Young adults have the largest close contact frequency, (ii) Probability of close contact diminishes 
with increasing age difference between agents (agents are selective, that is, they tend to have close contacts with 
agents of similar age), (iii) Close contact age heterogeneity increases with age (young agents are more selective 
than older agents).

These three aspects of social interaction are incorporated into SERIA through the probability function Psoc , 
which depends on age and age difference. By means of Monte Carlo simulations, we model social close contacts 
by randomly drawing two agents and accepting them with a probability Psoc , according to the ages and age dif-
ferences of such agents.

Viral transmission.   If an infected (symptomatic or asymptomatic) and a susceptible agent get in contact, 
transmission occurs with probability Pctg . The latter changes during the infectious period, following a log-nor-
mal distribution27, peaking at 1.5 days post-latency period, approximately 1 day before symptom onset. Pctg is 
multiplied by 0.1 in case the infected agent is isolated. This is to account for the fact that perfect self-isolation is 
not realistic, but also that most violations observed are infrequent and constitute low risk activities28,29.

IDR scenarios.   In order to make a direct comparison between the performance of CT and CP strategies 
for different IDR scenarios, the same proportion of symptomatic (poly-symptomatic) and asymptomatic (oli-
gosymptomatic and proper asymptomatic) was considered in all the simulations performed (see “Agents” sec-
tion). IDR impacts directly on CT performance since tracing and isolation are only triggered by detected cases. 
Because symptomatic individuals are more likely to get tested, and the proportion of symptomatic infections 
increases with age, the IDR also increases with age. Finally, IDR also relies on testing capacity.

 Although still debated, some studies estimate IDR can be as low as 10% for youngsters and 40% for the elderly 
even in resource rich cities within highly developed countries as is the case of New York city13.

 To analyze scenarios with low, medium, and high detection capability, three IDR curves were considered: 

1.	 IDR1: (13% on average) Corresponds to the median IDR estimated for 91 countries12. We model this scenario 
by detecting only half of poly-symptomatic cases. Consequently, only half of poly-symptomatic agents trigger 
contact tracing, the other half is not tested/detected despite being self-isolated.

2.	 IDR2: (26% on average) This IDR is only reported for 18 out of the 91 countries12. In SERIA, corresponds to 
detecting all symptomatic agents.

3.	 IDR3: (37% on average) Very few countries are estimated to have IDRs above 37% as of June 202012, although 
testing capacity has greatly improved in most countries since then. We model this scenario by detecting all 
symptomatic as well as 15% of asymptomatic and oligosymptomatic infections, which are randomly selected.

Contact tracing.   SERIA comprises manual contact tracing (mCT), which is applied to all detected cases 
and digital contact tracing (dCT), which only applies to those with an installed smartphone app30,31. Household 
and non-household contacts are traced equally. While the extent of mCT strictly depends on the IDR, dCT also 
depends on the app adoption rate (A). Manual and digital CT have different close contact detection probabilities: 
For mCT, we assumed that a 40% of the close contacts of a detected case are traced and isolated. For dCT, in 
order to be detected, both agents in close contact have to have the app installed on their devices. Even in such a 
case, the wireless beacon (i.e., BLE) emitted by the device might not be successfully detected and interpreted as 
a close contact by the other end. In this work we consider an accuracy of 85% for detecting close contacts, which 
corresponds to typical values reported in the literature30. Therefore, the actual close contact detection probabil-
ity for dCT is A2 × 0.85 . Furthermore, our model assumes that testing information of diagnosed cases is made 
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available to the health authority directly by the laboratory (i.e., users are not reporting the test diagnosis via the 
app). This event then triggers mCT or dCT for every agent diagnosed as positive for SARS-CoV-2. Both mCT 
and dCT are affected by the time delay D, which corresponds to the days from testing to the isolation of a positive 
case and its contacts. Symptomatic agents are tested and isolated upon symptom onset. In the case of IDR3, 15% 
of oligosymptomatic and asymptomatic agents are detected, isolated and also trigger CT. Close contacts are iso-
lated D days after testing of the index case, regardless of the index case category (symptomatic or asymptomatic).

We consider both one-step contact tracing as well as recursive contact tracing (rCT), where not only direct 
contacts of positive cases are traced, but also contacts of contacts (also known as two-step contact tracing)32,33. 
We assume 100% sensitivity and specificity for PCR testing, and unlimited CT resources/facilities.

Contact prevention.   CP is possible only using digital means; thus, like dCT, the close contact detection 
probability is A2 × 0.85 , where A is the app adoption rate.

In contrast with CT, where contacts must be able to be linked to an identity, CP contacts only need to be 
counted. The average number of daily contacts of each user is then compared with the close contact threshold 
Cmax recommended by the authorities through the app. If it is higher, a warning message is sent. In response, 
agents may reduce their social contact frequency. In doing so, if the average contact count gets below Cmax , the 
warning expires and the user returns to its normal social habits. The response of the population to the app warn-
ing is determined by the non-adherence parameter da ∈ [0, 1] , which moderates the forthcoming contacts after 
the warning is received. For instance, if da = 0.6 , after receiving the app warning an agent will decrease its social 
contact frequency to 60% of its regular rate. da is assigned randomly to each agent using a Gaussian distribution.

The resulting impact of CP on the contact frequency of the affected population (which depends on app adop-
tion rate) is shown in the Supporting Information. We can briefly describe the population response to the app 
warning as follows: Upon app warning 5% of agents decrease their contact frequency to the 0–25% range, 25% 
of the population decreases contact frequency to the 25–50% range, 45% of the population decreases contact 
frequency to the 50–75% range, and the remaining 25% of the population decreases their contact frequency to 
the 75–100% range. This attempts to realistically consider both adherence and capability of agents to reduce 
their daily close contact frequencies.

The latter was studied for Cmax from 40 to 90% the maximum average of daily close contacts among age groups 
(1.5 to 3.5 contacts per day, correspondingly). Each household contact is fractionally counted to avoid members 
of large households reaching the threshold with few social contacts. In the rCP strategy, the app can also count 
indirect contacts and warn their users if they reach a recursive close contact threshold rCmax.

Figures.  Figures were generated using xmGrace version 5.1.22 (https://​plasma-​gate.​weizm​ann.​ac.​il/​Grace/), 
and GIMP version 2.10.24 (https://​www.​gimp.​org/).

Results
To assess the effectiveness of each strategy in diminishing viral propagation, we perform 365 days of SERIA 
simulation with initial Re = 1.5, and assess the percentage of the population infected at the end of said simulations 
(FES). Re = 1.5 is an estimated Re for populations that are implementing mandatory mask use, have closed places 
of worship, schools and universities, banned social gatherings of more than 10 people and implemented protocols 
for restaurants, bars and gymnasiums. Scenarios analyzed are organized following the aforementioned IDRs 
distributions, namely 13%, 26% and 37% (overall percentages). For each scenario, the performance of CT and 
CP strategies are compared for different delays (D) and close contact thresholds ( Cmax ), respectively. The effects 
of app adoption rates (A) are also studied together with the implementation of a combined CT + CP strategy.

Effect of IDR and delay on CT and rCT.  Figure 2 presents the impact of app adoption rates and delays on 
the effectiveness of CT for each of the IDR scenarios.

The most significant result is the strong effect of IDR on CT effectiveness. For the IDR1 scenario, CT hardly 
reduces viral propagation, even for high app adoption rates and low delays. Therefore, adequate diagnostic testing 
is a requirement for effective CT. CT effectiveness increases for IDR2, and most notably, for IDR3. These results 
could explain the limited success observed for digital CT techniques in reducing the spread of COVID-19 in the 
first half of 202034, when diagnostic capabilities were still low (with IDRs similar to, or even lower than, IDR1). 
The impact of time delays on rCT effectiveness is lower than for CT. At low delays, however, both CT and rCT 
show practically the same performance for different app adoptions. Thus, rCT may result particularly convenient 
in cases with high diagnostic/isolation delays.

CT versus CP and combined strategies.  Figure 3 shows the performance of CT, CP and CT + CP strate-
gies for IDR1, IDR2 and IDR3 scenarios. To this end, we have fixed parameters to a delay of 3 days in CT and a 
close contact threshold of Cmax = 3.1 in CP. The rather low value of D is quite optimistic, while the value of Cmax 
corresponds to 80% of the maximum close contact frequency. As expected, the no strategy (none) and mCT 
FES values are constant for all app adoption rates. However, detecting a higher percentage of infections (higher 
IDRs) increases the effectiveness of mCT, resulting in lower FES values for IDR2 and IDR3. At zero app adoption, 
CP and CT strategies are as efficient as mCT. For IDR1, CT is almost insensitive to app adoption rates, achieving 
similar FES values to mCT. However, CP reduces FES by up to 20% compared with mCT, which suggests that 
CP is significantly more effective at reducing viral propagation when diagnostic testing is deficient. On the other 
hand, CT effectiveness increases when detecting all symptomatic agents (IDR2) and most notably, when 15% of 
asymptomatic agents are also identified (IDR3). Nevertheless, CP outperforms CT in all scenarios, and the com-
bined CT + CP strategy proves to be remarkably effective reducing FES from 47–55% to 26–42%.

https://plasma-gate.weizmann.ac.il/Grace/
https://www.gimp.org/
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To ensure that these results are not restricted to these particular IDR scenarios, we analyze the effectiveness of 
CT, CP and CT + CP under varying values of IDR, as shown in Fig. 4. Results confirm that low testing efficiency 
greatly impairs CT, while CP shows clear improvements with respect to mCT even at low app adoption rates 
(40%). High IDRs allows mCT to have significant effectiveness in reducing viral spread, although it should be 
noted we are assuming unlimited mCT resources. As a result, CT + CP achieves a FES reduction of 23% with 
respect to mCT (for A = 60% and IDR = 44%).

Finally, Table 1 summarizes FES, mortality rate, and effective basic reproduction number ( Re ) for the evalu-
ated IDR scenarios. Without applying any mitigation strategy (none), our simulations estimate a FES of 57% for 
IDR1 and IDR2 and 56% for IDR3, suggesting that massive testing has little to no effect without contact tracing. 
Being insensitive to IDR, CP is capable of reducing Re from 1.52 to 1.36 (for A = 60 % and IDR1). Details shown 
in Fig. S12 reveal that, in contrast with CT, CP lowers Re from the start. Combined CT + CP strategies can reduce 
mortality by 28% (IDR1), 36% (IDR2) and 56% (IDR3) with respect to mCT.

Discussion
Although a COVID-19 vaccine is expected to soon be available worldwide as of December 2020 and transmis-
sion mitigation will need to persist until herd immunity is achieved, many countries are still seeing increasing 
amounts of infections. Here we present SERIA, a model which we use to assess CT and CP effectiveness, by 

Figure 2.   Final epidemic size shown as a heatmap, as a function of CT app adoption and delay (days from 
symptom onset to contact isolation). The performance of CT (above) and rCT (below) are compared for the 
three IDR scenarios detailed in Fig. 1. Contour lines for different FES values are shown. Greater delays, low app 
adoption, and low IDRs result in high FES values, which indicate low CT effectiveness.

Figure 3.   Final epidemic size for CT, CP, and combined CT + CP strategies in three IDR scenarios for varying 
app adoption percentages. IDR1, IDR2 and IDR3 correspond to 13%, 26% and 37% overall infections detected. 
We also plot no strategy (none) or only manual CT (mCT) scenarios as dotted lines for reference. Darker and 
lighter colored areas show the standard deviation and highest/lowest values obtained from 60 simulations of 1 × 
105 agents per point. Results correspond to maximum number of direct close contacts Cmax = 3.1 for CP and a 
delay of D = 3 days since symptoms onset for CT.
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contemplating heterogeneous mixing, intricated social interaction patterns and many age-dependant factors 
such as symptomatic fraction of infections. Our results can offer explanations as to why CT strategies produce 
conflicting results in different countries, as well as providing compelling evidence that CP is an appealing com-
plimentary approach to control respiratory viruses such as COVID-19.

Our results confirm that long time delays hinder CT effectiveness5, but more importantly, they reveal the 
strong dependency of CT on infection detection rates (IDR), showing very limited effectiveness in low IDR sce-
narios. This is especially relevant since more than half of countries are estimated to have IDR values similar or 
inferior to IDR1

12 which renders CT almost completely ineffective. Improving IDR implies increasing diagnostic 

Figure 4.   Final epidemic size for CT, CP, and combined CT + CP strategies for varying values of IDR at two 
fixed app adoption (A) rates. The cases where no strategy (none) or only manual CT (mCT) is applied are 
plotted as dashed lines for reference (same for both plots). Results correspond to maximum number of direct 
close contacts Cmax = 3.1 for CP and a delay D = 3 days since symptoms onset for CT. Darker and lighter 
coloured areas show the standard deviation and highest/lowest simulation values, respectively.

Table 1.   Final epidemic size (FES), mortality rate (M) and effective basic reproductive number (Re) for 
three IDR scenarios (average IDR values are given in brackets). Values for different transmission mitigation 
strategies and different app adoption rates (A) are compared. FES and mortality rates are calculated at the end 
of each simulation, while Re values are estimated as averages for days 20 to 25 of each simulation.

Scenario A (%) Strategy FES [%] M [%] Re

IDR1

0
None 57 0.39 1.52

mCT 55 0.36 1.50

40

CT 54 0.35 1.49

CP 48 0.31 1.38

CT + CP 47 0.31 1.38

60

CT 53 0.34 1.46

CP 44 0.29 1.36

CT + CP 42 0.28 1.31

IDR2

0
None 57 0.39 1.52

mCT 55 0.36 1.50

40

CT 51 0.33 1.44

CP 45 0.29 1.36

CT + CP 43 0.29 1.35

60

CT 49 0.32 1.42

CP 40 0.27 1.32

CT + CP 38 0.25 1.29

IDR3

0
None 56 0.37 1.51

mCT 47 0.30 1.40

40

CT 43 0.28 1.37

CP 39 0.25 1.31

CT + CP 35 0.23 1.28

 60

CT 40 0.25 1.33

CP 34 0.22 1.27

CT + CP 26 0.17 1.21
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capacity through infrastructure and sufficiently trained personnel, which requires time as well as large economic 
investments. For underdeveloped and developing countries, this option may not be plausible.

We developed an alternative mitigation strategy, which circumvents these deficiencies, and could be imple-
mented with low economic requirements, which we named contact prevention (CP). Aimed at promoting com-
munity self-awareness, self-control and social responsibility, CP leverages digital assets to inform app users 
regarding their social contact frequency, warning when social behaviour leads to increased infection/transmis-
sion risk.

In contrast to the limitations of CT analyzed above, CP proved to remain effective even for low IDRs, 
which makes it a particularly interesting strategy for countries with limited testing resources. While FES of 
CT approaches 55% for low IDRs and 47% for high IDRs, CP achieves FES in the order of 42–26% (at 60% app 
adoption). Moreover, the combined implementation of CT + CP resulted in ~ 25% FES reduction, bringing 
mortality down by 28–56% depending on IDR and app adoption rates. CT and CP techniques proved to be 
rather orthogonal in their contributions to reduce FES. We explain this by the fact that CT excels at quickly 
isolating detected symptomatic cases and their close contacts, while CP is able to significantly reduce transmis-
sion provoked by asymptomatic and pre-symptomatic carriers. Thus, a joint implementation of CT and CP is an 
appealing approach to mitigate the effects of respiratory virus pandemics.

Moreover, CP presents two further qualitative benefits over CT. One is enhanced privacy of app users, which 
depending on the CP app configuration (i.e., identify repeated contacts with the same person in rCP) could 
range from high to full anonymity. The second is long-term game-based habit formation and social conduct 
modification. The informative notifications from the CP app could provoke profound habit changes that could 
additionally reduce FES in the long-term, by sustainably making users aware of the risks associated with certain 
behaviours. Finally, as vaccines are rolled-out, the flexibility of the Cmax parameter can be conveniently and 
controllably increased as the population approaches herd immunity.

As on-going work, a prototype for such a CT + CP application is in development by these authors (and oth-
ers) in the frame of the ContactAR project.

Received: 28 January 2021; Accepted: 25 June 2021
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