10,783 research outputs found
Aerodynamic tests and analysis of a turbojet-boosted launch vehicle concept (spacejet) over a Mach number range of 1.50 to 2.86
Results from analytical and experimental studies of the aerodynamic characteristics of a turbojet-boosted launch vehicle concept through a Mach number range of 1.50 to 2.86 are presented. The vehicle consists of a winged orbiter utilizing an area-ruled axisymmetric body and two winged turbojet boosters mounted underneath the orbiter wing. Drag characteristics near zero lift were of prime interest. Force measurements and flow visualization techniques were employed. Estimates from wave drag theory, supersonic lifting surface theory, and impact theory are compared with data and indicate the ability of these theories to adequately predict the aerodynamic characteristics of the vehicle. Despite the existence of multiple wings and bodies in close proximity to each other, no large scale effects of boundary layer separation on drag or lift could be discerned. Total drag levels were, however, sensitive to booster locations
Gravitational Waves Probe the Coalescence Rate of Massive Black Hole Binaries
We calculate the expected nHz--Hz gravitational wave (GW) spectrum from
coalescing Massive Black Hole (MBH) binaries resulting from mergers of their
host galaxies. We consider detection of this spectrum by precision pulsar
timing and a future Pulsar Timing Array. The spectrum depends on the merger
rate of massive galaxies, the demographics of MBHs at low and high redshift,
and the dynamics of MBH binaries. We apply recent theoretical and observational
work on all of these fronts. The spectrum has a characteristic strain
, just below the detection limit from
recent analysis of precision pulsar timing measurements. However, the amplitude
of the spectrum is still very uncertain owing to approximations in the
theoretical formulation of the model, to our lack of knowledge of the merger
rate and MBH population at high redshift, and to the dynamical problem of
removing enough angular momentum from the MBH binary to reach a GW-dominated
regime.Comment: 31 Pages, 8 Figures, small changes to match the published versio
Estimating the distribution of dynamic invariants: illustrated with an application to human photo-plethysmographic time series
Dynamic invariants are often estimated from experimental time series with the aim of differentiating between different physical states in the underlying system. The most popular schemes for estimating dynamic invariants are capable of estimating confidence intervals, however, such confidence intervals do not reflect variability in the underlying dynamics. We propose a surrogate based method to estimate the expected distribution of values under the null hypothesis that the underlying deterministic dynamics are stationary. We demonstrate the application of this method by considering four recordings of human pulse waveforms in differing physiological states and show that correlation dimension and entropy are insufficient to differentiate between these states. In contrast, algorithmic complexity can clearly differentiate between all four rhythms
Time transfer between the Goddard Optical Research Facility and the U.S. Naval Observatory using 100 picosecond laser pulses
A horizontal two-way time comparison link in air between the University of Maryland laser ranging and time transfer equipment at the Goddard Optical Research Facility (GORF) 1.2 m telescope and the Time Services Division of the U.S. Naval Observatory (USNO) was established. Flat mirrors of 25 cm and 30 cm diameter respectively were placed on top of the Washington Cathedral and on a water tower at the Beltsville Agricultural Research Center. Two optical corner reflectors at the USNO reflect the laser pulses back to the GORF. Light pulses of 100 ps duration and an energy of several hundred microjoules are sent at the rate of 10 pulses per second. The detection at the USNO is by means of an RCA C30902E avalanche photodiode and the timing is accomplished by an HP 5370A computing counter and an HP 1000 computer with respect to a 10 pps pulse train from the Master Clock
Recommended from our members
Subregional Hippocampal Thickness Abnormalities in Older Adults with a History of Heavy Cannabis Use.
Background and Aims: Legalization of cannabis (CB) for both medicinal and, in some states, recreational use, has given rise to increasing usage rates across the country. Of particular concern are indications that frequent CB use may be selectively harmful to the developing adolescent brain compared with adult-onset usage. However, the long-term effects of heavy, adolescent CB use on brain structure and cognitive performance in late-life remain unknown. A critical brain region is the hippocampus (HC), where there is a striking intersection between high concentrations of cannabinoid 1 (CB1) receptors and age-related pathology. Design: We investigated whether older adults (average age=66.6+7.2 years old) with a history of early life CB use show morphological differences in hippocampal subregions compared with older, nonusers. Methods: We performed high-resolution magnetic resonance imaging combined with computational techniques to assess cortical thickness of the medial temporal lobe, neuropsychological testing, and extensive drug use histories on 50 subjects (24 formerly heavy cannabis users [CB+ group] abstinent for an average of 28.7 years, 26 nonusers [CB- group]). We investigated group differences in hippocampal subregions, controlling for age, sex, and intelligence (as measured by the Wechsler Test of Adult Reading), years of education, and cigarette use. Results: The CB+ subjects exhibited thinner cortices in subfields cornu ammonis 1 [CA1; F(1,42)=9.96, p=0.0003], and CA2, 3, and the dentate gyrus [CA23DG; F(1,42)=23.17, p<0.0001], and in the entire HC averaged over all subregions [F(1,42)=8.49, p=0.006]. Conclusions: Negative effects of chronic adolescent CB use on hippocampal structure are maintained well into late life. Because hippocampal cortical loss underlies and exacerbates age-related cognitive decline, these findings have profound implications for aging adults with a history of early life usage. Clinical Trial Registration: ClinicalTrials.gov # NCT01874886
Fitness-driven deactivation in network evolution
Individual nodes in evolving real-world networks typically experience growth
and decay --- that is, the popularity and influence of individuals peaks and
then fades. In this paper, we study this phenomenon via an intrinsic nodal
fitness function and an intuitive aging mechanism. Each node of the network is
endowed with a fitness which represents its activity. All the nodes have two
discrete stages: active and inactive. The evolution of the network combines the
addition of new active nodes randomly connected to existing active ones and the
deactivation of old active nodes with possibility inversely proportional to
their fitnesses. We obtain a structured exponential network when the fitness
distribution of the individuals is homogeneous and a structured scale-free
network with heterogeneous fitness distributions. Furthermore, we recover two
universal scaling laws of the clustering coefficient for both cases, and , where and refer to the node degree and the
number of active individuals, respectively. These results offer a new simple
description of the growth and aging of networks where intrinsic features of
individual nodes drive their popularity, and hence degree.Comment: IoP Styl
Elastic energy of polyhedral bilayer vesicles
In recent experiments [M. Dubois, B. Dem\'e, T. Gulik-Krzywicki, J.-C.
Dedieu, C. Vautrin, S. D\'esert, E. Perez, and T. Zemb, Nature (London) Vol.
411, 672 (2001)] the spontaneous formation of hollow bilayer vesicles with
polyhedral symmetry has been observed. On the basis of the experimental
phenomenology it was suggested [M. Dubois, V. Lizunov, A. Meister, T.
Gulik-Krzywicki, J. M. Verbavatz, E. Perez, J. Zimmerberg, and T. Zemb, Proc.
Natl. Acad. Sci. U.S.A. Vol. 101, 15082 (2004)] that the mechanism for the
formation of bilayer polyhedra is minimization of elastic bending energy.
Motivated by these experiments, we study the elastic bending energy of
polyhedral bilayer vesicles. In agreement with experiments, and provided that
excess amphiphiles exhibiting spontaneous curvature are present in sufficient
quantity, we find that polyhedral bilayer vesicles can indeed be energetically
favorable compared to spherical bilayer vesicles. Consistent with experimental
observations we also find that the bending energy associated with the vertices
of bilayer polyhedra can be locally reduced through the formation of pores.
However, the stabilization of polyhedral bilayer vesicles over spherical
bilayer vesicles relies crucially on molecular segregation of excess
amphiphiles along the ridges rather than the vertices of bilayer polyhedra.
Furthermore, our analysis implies that, contrary to what has been suggested on
the basis of experiments, the icosahedron does not minimize elastic bending
energy among arbitrary polyhedral shapes and sizes. Instead, we find that, for
large polyhedron sizes, the snub dodecahedron and the snub cube both have lower
total bending energies than the icosahedron
Evolution of accretion disks around massive black holes: constraints from the demography of active galactic nuclei
Observations have shown that the Eddington ratios (the ratio of the
bolometric luminosity to the Eddington luminosity) in QSOs/active galactic
nuclei (AGNs) cover a wide range. In this paper we connect the demography of
AGNs obtained by the Sloan Digital Sky Survey with the accretion physics around
massive black holes and propose that the diversity in the Eddington ratios is a
natural result of the long-term evolution of accretion disks in AGNs. The
observed accretion rate distribution of AGNs (with host galaxy velocity
dispersion sigma~70-200 km/s) in the nearby universe (z<0.3) is consistent with
the predictions of simple theoretical models in which the accretion rates
evolve in a self-similar way. We also discuss the implications of the results
for the issues related to self-gravitating disks, coevolution of galaxies and
QSOs/AGNs, and the unification picture of AGNs.Comment: 18 pages, 2 figures; revised, main conclusions not changed; to appear
in ApJ, Oct., 200
Physical Activity and Hippocampal Sub-Region Structure in Older Adults with Memory Complaints.
BackgroundPhysical activity (PA) plays a major role in maintaining cognition in older adults. PA has been shown to be correlated with total hippocampal volume, a memory-critical region within the medial temporal lobe (MTL). However, research on associations between PA and MTL sub-region integrity is limited.ObjectiveTo examine the relationship between PA, MTL thickness, and its sub-regions, and cognitive function in non-demented older adults with memory complaints.MethodsTwenty-nine subjects aged â„60 years, with memory complaints were recruited for this cross-sectional study. PA was tracked for 7 days using accelerometers, and average number of steps/day determined. Subjects were categorized into two groups: those who walked â€4000 steps/day (lower PA) and those with >4000 steps/day (higher PA). Subjects received neuropsychological testing and 3T MRI scans. Nonparametric ANCOVAs controlling for age examined differences between the two groups.ResultsTwenty-six subjects aged 72.7(8.1) years completed the study. The higher PA group (nâ=â13) had thicker fusiform gyrus (median differenceâ=â0.11âmm, effect size (ES)â=â1.43, pâ=â0.001) and parahippocampal cortex (median differenceâ=â0.12âmm, ESâ=â0.93, pâ=â0.04) compared to the lower PA group. The higher PA group also exhibited superior performance in attention and information-processing speed (median differenceâ=â0.90, ESâ=â1.61, pâ=â0.003) and executive functioning (median differenceâ=â0.97, ESâ=â1.24, pâ=â0.05). Memory recall was not significantly different between the two groups.ConclusionOlder non-demented individuals complaining of memory loss who walked >4000 steps each day had thicker MTL sub-regions and better cognitive functioning than those who walked â€4000 steps. Future studies should include longitudinal analyses and explore mechanisms mediating hippocampal related atrophy
Condensation of Silica Nanoparticles on a Phospholipid Membrane
The structure of the transient layer at the interface between air and the
aqueous solution of silica nanoparticles with the size distribution of
particles that has been determined from small-angle scattering has been studied
by the X-ray reflectometry method. The reconstructed depth profile of the
polarizability of the substance indicates the presence of a structure
consisting of several layers of nanoparticles with the thickness that is more
than twice as large as the thickness of the previously described structure. The
adsorption of 1,2-distearoyl-sn-glycero-3-phosphocholine molecules at the
hydrosol/air interface is accompanied by the condensation of anion silica
nanoparticles at the interface. This phenomenon can be qualitatively explained
by the formation of the positive surface potential due to the penetration and
accumulation of Na+ cations in the phospholipid membrane.Comment: 7 pages, 5 figure
- âŠ