452 research outputs found

    Chemical ozone loss in the Arctic winter 1991–1992

    Get PDF
    Chemical ozone loss in winter 1991–1992 is recalculated based on observations of the HALOE satellite instrument, Version 19, ER-2 aircraft measurements and balloon data. HALOE satellite observations are shown to be reliable in the lower stratosphere below 400 K, at altitudes where the measurements are most likely disturbed by the enhanced sulfate aerosol loading, as a result of the Mt.~Pinatubo eruption in June 1991. Significant chemical ozone loss (13–17 DU) is observed below 380 K from Kiruna balloon observations and HALOE satellite data between December 1991 and March 1992. For the two winters after the Mt. Pinatubo eruption, HALOE satellite observations show a stronger extent of chemical ozone loss towards lower altitudes compared to other Arctic winters between 1991 and 2003. In spite of already occurring deactivation of chlorine in March 1992, MIPAS-B and LPMA balloon observations indicate that chlorine was still activated at lower altitudes, consistent with observed chemical ozone loss occurring between February and March and April. Large chemical ozone loss of more than 70 DU in the Arctic winter 1991–1992 as calculated in earlier studies is corroborated here

    The Climate Response to Stratospheric Aerosol Geoengineering Can Be Tailored Using Multiple Injection Locations

    Get PDF
    By injecting different amounts of SO_2 at multiple different latitudes, the spatial pattern of aerosol optical depth (AOD) can be partially controlled. This leads to the ability to influence the climate response to geoengineering with stratospheric aerosols, providing the potential for design. We use simulations from the fully coupled whole-atmosphere chemistry climate model CESM1(WACCM) to demonstrate that by appropriately combining injection at just four different locations, 30°S, 15°S, 15°N, and 30°N, then three spatial degrees of freedom of AOD can be achieved: an approximately spatially uniform AOD distribution, the relative difference in AOD between Northern and Southern Hemispheres, and the relative AOD in high versus low latitudes. For forcing levels that yield 1–2°C cooling, the AOD and surface temperature response are sufficiently linear in this model so that the response to different combinations of injection at different latitudes can be estimated from single-latitude injection simulations; nonlinearities associated with both aerosol growth and changes to stratospheric circulation will be increasingly important at higher forcing levels. Optimized injection at multiple locations is predicted to improve compensation of CO_2-forced climate change relative to a case using only equatorial aerosol injection (which overcools the tropics relative to high latitudes). The additional degrees of freedom can be used, for example, to balance the interhemispheric temperature gradient and the equator to pole temperature gradient in addition to the global mean temperature. Further research is needed to better quantify the impacts of these strategies on changes to long-term temperature, precipitation, and other climate parameters

    Impact of the GeoMIP G1 sunshade geoengineering experiment on the Atlantic meridional overturning circulation

    Get PDF
    We analyze the multi-earth system model responses of ocean temperatures and the Atlantic Meridional Overturning Circulation (AMOC) under an idealized solar radiation management scenario (G1) from the Geoengineering Model Intercomparison Project. All models simulate warming of the northern North Atlantic relative to no geoengineering, despite geoengineering substantially offsetting the increases in mean global ocean temperatures. Increases in the temperature of the North Atlantic Ocean at the surface (~0.25 K) and at a depth of 500 m (~0.10 K) are mainly due to a 10 Wm−2 reduction of total heat flux from ocean to atmosphere. Although the AMOC is slightly reduced under the solar dimming scenario, G1, relative to piControl, it is about 37% stronger than under abrupt4 × CO2 . The reduction of the AMOC under G1 is mainly a response to the heat flux change at the northern North Atlantic rather than to changes in the water flux and the wind stress. The AMOC transfers heat from tropics to high latitudes, helping to warm the high latitudes, and its strength is maintained under solar dimming rather than weakened by greenhouse gas forcing acting alone. Hence the relative reduction in high latitude ocean temperatures provided by solar radiation geoengineering, would tend to be counteracted by the correspondingly active AMOC circulation which furthermore transports warm surface waters towards the Greenland ice sheet, warming Arctic sea ice and permafrost

    Stratospheric Dynamical Response and Ozone Feedbacks in the Presence of SO_2 Injections

    Get PDF
    Injections of sulfur dioxide into the stratosphere are among several proposed methods of solar radiation management. Such injections could cool the Earth's climate. However, they would significantly alter the dynamics of the stratosphere. We explore here the stratospheric dynamical response to sulfur dioxide injections ∼5 km above the tropopause at multiple latitudes (equator, 15°S, 15°N, 30°S and 30°N) using a fully coupled Earth system model, Community Earth System Model, version 1, with the Whole Atmosphere Community Climate Model as its atmospheric component (CESM1(WACCM)). We find that in all simulations, the tropical lower stratosphere warms primarily between 30°S and 30°N, regardless of injection latitude. The quasi-biennial oscillation (QBO) of the tropical zonal wind is altered by the various sulfur dioxide injections. In a simulation with a 12 Tg yr^(−1) equatorial injection, and with fully interactive chemistry, the QBO period lengthens to ∼3.5 years but never completely disappears. However, in a simulation with specified (or noninteractive) chemical fields, including O_3 and prescribed aerosols taken from the interactive simulation, the oscillation is virtually lost. In addition, we find that geoengineering does not always lengthen the QBO. We further demonstrate that the QBO period changes from 24 to 12–17 months in simulations with sulfur dioxide injections placed poleward of the equator. Our study points to the importance of understanding and verifying of the complex interactions between aerosols, atmospheric dynamics, and atmospheric chemistry as well as understanding the effects of sulfur dioxide injections placed away from the Equator on the QBO

    Modelling the Inorganic Bromine Partitioning in the Tropical Tropopause over the Pacific Ocean

    Get PDF
    The stratospheric inorganic bromine burden (Bry) arising from the degradation of brominated very short-lived organic substances (VSL org ), and its partitioning between reactive and reservoir species, is needed for a comprehensive assessment of the ozone depletion potential of brominated trace gases. Here we present modelled inorganic bromine abundances over the Pacific tropical tropopause based on aircraft observations of VSL org of two campaigns of the Airborne Tropical TRopopause EXperiment (ATTREX 2013 carried out over eastern Pacific and ATTREX 2014 carried out over the western Pacific) and chemistry-climate simulations (along ATTREX flight tracks) using the specific meteorology prevailing. Using the Community Atmosphere Model with Chemistry (CAM-Chem), we model that BrO and Br are the daytime dominant species. Integrated across all ATTREX flights BrO represents ~ 43 % and 48 % of daytime Bry abundance at 17 km over the Western and Eastern Pacific, respectively. The results also show zones where Br/BrO >1 depending on the solar zenith angle (SZA), ozone concentration and temperature. On the other hand, BrCl and BrONO 2 were found to be the dominant night-time species with ~ 61% and 56 % of abundance at 17 km over the Western and Eastern Pacific, respectively. The western-to-eastern differences in the partitioning of inorganic bromine are explained by different abundances of ozone (O3), nitrogen dioxide (NO2) , and total inorganic chlorine (Cly).Fil: Navarro, María A.. University of Miami; Estados UnidosFil: Saiz-lopez, Alfonso. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Cuevas, Carlos Alberto. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Tecnologica Nacional. Facultad Regional Mendoza. Secretaría de Ciencia, Tecnología y Postgrado; ArgentinaFil: Atlas, Elliot. University of Miami; Estados UnidosFil: Rodriguez Lloeveras, Xavier. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Kinnison, Douglas E.. National Center For Atmospheric Research. Amospheric Chemistry División; Estados UnidosFil: Lamarque, Jean Francois. National Center For Atmospheric Research. Amospheric Chemistry División; Estados UnidosFil: Tilmes, Simone. National Center For Atmospheric Research. Amospheric Chemistry División; Estados UnidosFil: Thornberry, Troy. State University of Colorado at Boulder; Estados Unidos. Earth System Research Laboratory; Estados UnidosFil: Rollins, Andrew. State University of Colorado at Boulder; Estados Unidos. Earth System Research Laboratory; Estados UnidosFil: Elkins, James W.. Earth System Research Laboratory; Estados UnidosFil: Hintsa, Eric J.. State University of Colorado at Boulder; Estados Unidos. Earth System Research Laboratory; Estados UnidosFil: Moore, Fred L.. State University of Colorado at Boulder; Estados Unidos. Earth System Research Laboratory; Estados Unido

    Stratospheric Ozone Response in Experiments G3 and G4 of the Geoengineering Model Intercomparison Project (GeoMIP)

    Get PDF
    Geoengineering with stratospheric sulfate aerosols has been proposed as a means of temporarily cooling the planet, alleviating some of the side effects of anthropogenic CO2 emissions. However, one of the known side effects of stratospheric injections of sulfate aerosols is a decrease in stratospheric ozone. Here we show results from two general circulation models and two coupled chemistry climate models that have simulated stratospheric sulfate aerosol geoengineering as part of the Geoengineering Model Intercomparison Project (GeoMIP). Changes in photolysis rates and upwelling of ozone-poor air in the tropics reduce stratospheric ozone, suppression of the NOx cycle increases stratospheric ozone, and an increase in available surfaces for heterogeneous chemistry modulates reductions in ozone. On average, the models show a factor 20-40 increase of the sulfate aerosol surface area density (SAD) at 50 hPa in the tropics with respect to unperturbed background conditions and a factor 3-10 increase at mid-high latitudes. The net effect for a tropical injection rate of 5 Tg SO2 per year is a decrease in globally averaged ozone by 1.1-2.1 DU in the years 2040-2050 for three models which include heterogeneous chemistry on the sulfate aerosol surfaces. GISS-E2-R, a fully coupled general circulation model, performed simulations with no heterogeneous chemistry and a smaller aerosol size; it showed a decrease in ozone by 9.7 DU. After the year 2050, suppression of the NOx cycle becomes more important than destruction of ozone by ClOx, causing an increase in total stratospheric ozone. Contribution of ozone changes in this experiment to radiative forcing is 0.23 W m-2 in GISS-E2-R and less than 0.1 W m-2 in the other three models. Polar ozone depletion, due to enhanced formation of both sulfate aerosol SAD and polar stratospheric clouds, results in an average 5 percent increase in calculated surface UV-B

    Chemical ozone loss in the arctic polar stratosphere derived from satellite observations

    Get PDF
    In dieser Arbeit wurde der chemische Ozonverlust in der arktischen Stratosphäre über elf Jahre hinweg, zwischen 1991 und 2002, mit Hilfe der so genannten "Ozon-Tracer Korrelationstechnik" (TRAC), untersucht. Bei dieser Methode werden Korrelationen zwischen Ozon und langlebigen Spurenstoffen im Verlauf des Winters im Polarwirbels beobachtet und so der jährliche akkumulierte Ozonverlust berechnet. Die Ergebnisse dieser Arbeit basieren im wesentlichen auf Messdaten der Satelliteninstrumente: HALOE (Halogen Occultation Experiment) auf UARS (Upper Atmosphere Research Satellite) und ILAS (Improved Limb Atmospheric Spectrometer) Instrument auf ADEOS (Advanced Earth Observing Satellite). Das HALOE Instrument misst seit Oktober 1991 kontinuierlich alle zwei bis drei Monate für einige Tage in höheren nördlichen Breiten. ILAS lieferte ausschließlich für den Winter 1996-97 Messungen, die über sieben Monate hinweg in hohen Breiten aufgenommen wurden. Aufgrund der eingeführten Erweiterungen und Verbesserungen der Methode in dieser Arbeit, konnte die Methode anhand einer detaillierten Studie für den Winter 1996-97 validiert werden. Die ILAS Messreihe wurde dazu verwendet, erstmals die Untersuchung der zeitlichen Entwicklung von Ozon-Tracer Korrelationen kontinuierlich für die gesamte Lebensdauer des Polarwirbels durchzuführen. Dabei wurden auch Korrelationen während der Bildung des Wirbels untersucht und im Besonderen mögliche Mischungsvorgänge zwischen Wirbelluft und Luftmassen außerhalb des Wirbels. Ausserdem wurde ein Vergleich der Ergebnisse von ILAS und HALOE Messdaten durchgeführt und Unterschiede in den Ergebnissen tiefgreifend analysiert. Basierend auf HALOE Messungen konnte die erweiterte TRAC Methode über elf Jahren hinweg angewendet werden. Damit war erstmals eine konsistente Analyse von Ozonverlust und Chloraktivierung über diesen Zeitraum möglich. Die Erweiterungen führten zu einer Verringerung und genauen Quantifizierung von Unsicherheiten der Ergebnisse. Ein deutlicher Zusammenhang zwischen meteorologischen Bedingungen, Chloraktivierung und dem chemischen Ozonverlust wurde deutlich. Weiterhin zeigte sich eine Abhängigkeit zwischen den meteorologischen Bedingungen und der Homogenität des Ozonverlustes innerhalb eines Winters, sowie der mögliche Einfluss von horizontaler Mischung auf Luftmassen in einem schwach ausgeprägten Polarwirbel. In dieser Arbeit wurde eine positive Korrelation zwischen den über die gesamte Lebensdauer des Wirbels auftretenden möglichen PSC-Flächen und den akkumulierten Ozonverlusten für die elf untersuchten Jahre deutlich. Es konnte darüber hinaus gezeigt werden, dass der Ozonverlust von deutlich mehr Einflüssen als nur von der Fläche möglichen PSC Auftretens bestimmt wird, sondern zum Beispiel von der Stärke der Sonneneinstrahlung abhängt. Außerdem lassen sich Auswirkungen von Vulkanausbrüchen, wie zum Beispiel im Jahr 1991 der des Mount Pinatubo, identifizieren

    Sensitivity of Aerosol Distribution and Climate Response to Stratospheric SO_2 Injection Locations

    Get PDF
    Injection of SO_2 into the stratosphere has been proposed as a method to, in part, counteract anthropogenic climate change. So far, most studies investigated injections at the equator or in a region in the tropics. Here we use Community Earth System Model version 1 Whole Atmosphere Community Climate Model (CESM1(WACCM)) to explore the impact of continuous single grid point SO_2 injections at seven different latitudes and two altitudes in the stratosphere on aerosol distribution and climate. For each of the 14 locations, 3 different constant SO_2 emission rates were tested to identify linearity in aerosol burden, aerosol optical depth, and climate effects. We found that injections at 15°N and 15°S and at 25 km altitude have equal or greater effect on radiation and surface temperature than injections at the equator. Nonequatorial injections transport SO_2 and sulfate aerosols more efficiently into middle and high latitudes and result in particles of smaller effective radius and larger aerosol burden in middle and high latitudes. Injections at 15°S produce the largest increase in global average aerosol optical depth and increase the change in radiative forcing per Tg SO_2/yr by about 15% compared to equatorial injections. High-altitude injections at 15°N produce the largest reduction in global average temperature of 0.2° per Tg S/yr for the last 7 years of a 10 year experiment. Injections at higher altitude are generally more efficient at reducing surface temperature, with the exception of large equatorial injections of at least 12 Tg SO_2/yr. These findings have important implications for designing a strategy to counteract global climate change

    Effects of Different Stratospheric SO_2 Injection Altitudes on Stratospheric Chemistry and Dynamics

    Get PDF
    Strategically applied geoengineering is proposed to reduce some of the known side effects of stratospheric aerosol modifications. Specific climate goals could be reached depending on design choices of stratospheric sulfur injections by latitude, altitude, and magnitude. Here we explore in detail the stratospheric chemical and dynamical responses to injections at different altitudes using a fully coupled Earth System Model. Two different scenarios are explored that produce approximately the same global cooling of 2°C over the period 2042–2049, a high‐altitude injection case using 24 Tg SO_2/year at 30 hPa (≈25‐km altitude) and a low‐altitude injection case using 32 Tg SO_2/year injections at 70 hPa (between 19‐ and 20‐km altitude), with annual injections divided equally between 15°N and 15°S. Both cases result in a warming of the lower tropical stratosphere up to 10 and 15°C for the high‐ and low‐altitude injection case and in substantial increases of stratospheric water vapor of up to 2 and 4 ppm, respectively, compared to no geoengineering conditions. Polar column ozone in the Northern Hemisphere is reduced by up to 18% in March for the high‐altitude injection case and up to 8% for the low‐altitude injection case. However, for winter middle and high northern latitudes, low‐altitude injections result in greater column ozone values than without geoengineering. These changes are mostly driven by dynamics and advection. Antarctic column ozone in 2042–2049 does not recover from present‐day (2002–2009) values for both cases
    corecore