18 research outputs found

    Computational Techniques for the Structural and Dynamic Analysis of Biological Networks

    Get PDF
    The analysis of biological systems involves the study of networks from different omics such as genomics, transcriptomics, metabolomics and proteomics. In general, the computational techniques used in the analysis of biological networks can be divided into those that perform (i) structural analysis, (ii) dynamic analysis of structural prop- erties and (iii) dynamic simulation. Structural analysis is related to the study of the topology or stoichiometry of the biological network such as important nodes of the net- work, network motifs and the analysis of the flux distribution within the network. Dy- namic analysis of structural properties, generally, takes advantage from the availability of interaction and expression datasets in order to analyze the structural properties of a biological network in different conditions or time points. Dynamic simulation is useful to study those changes of the biological system in time that cannot be derived from a structural analysis because it is required to have additional information on the dynamics of the system. This thesis addresses each of these topics proposing three computational techniques useful to study different types of biological networks in which the structural and dynamic analysis is crucial to answer to specific biological questions. In particu- lar, the thesis proposes computational techniques for the analysis of the network motifs of a biological network through the design of heuristics useful to efficiently solve the subgraph isomorphism problem, the construction of a new analysis workflow able to integrate interaction and expression datasets to extract information about the chromo- somal connectivity of miRNA-mRNA interaction networks and, finally, the design of a methodology that applies techniques coming from the Electronic Design Automation (EDA) field that allows the dynamic simulation of biochemical interaction networks and the parameter estimation

    Breaking the Immune Complexity of the Tumor Microenvironment Using Single-Cell Technologies

    Get PDF
    : Tumors are not a simple aggregate of transformed cells but rather a complicated ecosystem containing various components, including infiltrating immune cells, tumor-related stromal cells, endothelial cells, soluble factors, and extracellular matrix proteins. Profiling the immune contexture of this intricate framework is now mandatory to develop more effective cancer therapies and precise immunotherapeutic approaches by identifying exact targets or predictive biomarkers, respectively. Conventional technologies are limited in reaching this goal because they lack high resolution. Recent developments in single-cell technologies, such as single-cell RNA transcriptomics, mass cytometry, and multiparameter immunofluorescence, have revolutionized the cancer immunology field, capturing the heterogeneity of tumor-infiltrating immune cells and the dynamic complexity of tenets that regulate cell networks in the tumor microenvironment. In this review, we describe some of the current single-cell technologies and computational techniques applied for immune-profiling the cancer landscape and discuss future directions of how integrating multi-omics data can guide a new "precision oncology" advancement

    Automatic Parameterization of the Purine Metabolism Pathway through Discrete Event-based Simulation

    Get PDF
    Model development and analysis of metabolic networks is recognized as a key requirement for integrating in-vitro and in-vivo experimental data. In-silico simulation of a biochemical model allows one to test different experimental conditions, helping in the discovery of the dynamics that regulate the system. Although qualitative characterizations of such complex mechanisms are, at least partially, available, a fully-parametrized quantitative description is often miss- ing. On the other hand, several characteristics and issues to model biological systems are common to the electronics system modelling, such as concurrency, reactivity, abstraction levels, automatic reverse engineering, as well as design space explosion during validation. This work presents a methodology that applies languages, techniques, and tools well established in the context of electronic design automation (EDA) for modelling and simulation of metabolic networks through Petri nets. The paper presents the results obtained by applying the proposed methodology to model the purine metabolism starting from the metabolomics data obtained from naive lymphocytes and autoreactive T cells implicated in the induction of experimental autoimmune disorders

    PSEN1ΔE9, APPswe, and APOE4 Confer Disparate Phenotypes in Human iPSC-Derived Microglia

    Get PDF
    Summary Here we elucidate the effect of Alzheimer disease (AD)-predisposing genetic backgrounds, APOE4, PSEN1ΔE9, and APPswe, on functionality of human microglia-like cells (iMGLs). We present a physiologically relevant high-yield protocol for producing iMGLs from induced pluripotent stem cells. Differentiation is directed with small molecules through primitive erythromyeloid progenitors to re-create microglial ontogeny from yolk sac. The iMGLs express microglial signature genes and respond to ADP with intracellular Ca2+ release distinguishing them from macrophages. Using 16 iPSC lines from healthy donors, AD patients and isogenic controls, we reveal that the APOE4 genotype has a profound impact on several aspects of microglial functionality, whereas PSEN1ΔE9 and APPswe mutations trigger minor alterations. The APOE4 genotype impairs phagocytosis, migration, and metabolic activity of iMGLs but exacerbates their cytokine secretion. This indicates that APOE4 iMGLs are fundamentally unable to mount normal microglial functionality in AD.Peer reviewe

    Interrupting the nitrosative stress fuels tumor-specific cytotoxic T lymphocytes in pancreatic cancer

    Get PDF
    BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest tumors owing to its robust desmoplasia, low immunogenicity, and recruitment of cancer-conditioned, immunoregulatory myeloid cells. These features strongly limit the success of immunotherapy as a single agent, thereby suggesting the need for the development of a multitargeted approach. The goal is to foster T lymphocyte infiltration within the tumor landscape and neutralize cancer-triggered immune suppression, to enhance the therapeutic effectiveness of immune-based treatments, such as anticancer adoptive cell therapy (ACT). METHODS: We examined the contribution of immunosuppressive myeloid cells expressing arginase 1 and nitric oxide synthase 2 in building up a reactive nitrogen species (RNS)-dependent chemical barrier and shaping the PDAC immune landscape. We examined the impact of pharmacological RNS interference on overcoming the recruitment and immunosuppressive activity of tumor-expanded myeloid cells, which render pancreatic cancers resistant to immunotherapy. RESULTS: PDAC progression is marked by a stepwise infiltration of myeloid cells, which enforces a highly immunosuppressive microenvironment through the uncontrolled metabolism of L-arginine by arginase 1 and inducible nitric oxide synthase activity, resulting in the production of large amounts of reactive oxygen and nitrogen species. The extensive accumulation of myeloid suppressing cells and nitrated tyrosines (nitrotyrosine, N-Ty) establishes an RNS-dependent chemical barrier that impairs tumor infiltration by T lymphocytes and restricts the efficacy of adoptive immunotherapy. A pharmacological treatment with AT38 ([3-(aminocarbonyl)furoxan-4-yl]methyl salicylate) reprograms the tumor microenvironment from protumoral to antitumoral, which supports T lymphocyte entrance within the tumor core and aids the efficacy of ACT with telomerase-specific cytotoxic T lymphocytes. CONCLUSIONS: Tumor microenvironment reprogramming by ablating aberrant RNS production bypasses the current limits of immunotherapy in PDAC by overcoming immune resistance

    LErNet: characterization of lncRNAs via context-aware network expansion and enrichment analysis

    No full text
    Long non-coding RNAs (lncRNAs) have recently acquired a boost of interest for their implication in several biological conditions. However, many of these elements are not yet characterized. LErNet is a method to in silico define and predict the roles of IncRNAs. The core of the approach is a network expansion algorithm which enriches the genomic context of IncRNAs. The context is built by integrating the genes encoding proteins that are found next to the non-coding elements both at genomic and system level. The pipeline is particularly useful in situations where the functions of discovered IncRNAs are not yet known. The results show both the outperformance of LErNet compared to enrichment approaches in literature and its robustness in case of partially missing context information. LErNet is provided as an R package. It is available at https://github.com/InfOmics/LErNet

    Modelling, Simulation, and Tuning of Metabolic Networks Through Electronic Design Automation

    No full text
    This work presents an extended methodology that applies languages, techniques, and tools well established in the electronic design automation (EDA) field for modelling, simulation, and tuning of metabolic networks. The methodology, which has been implemented in an EDA-based platform, is compliant to modelling standards like SBML and Petri Nets (PN), and it allows for the automatic conversion of such model representations to an internal EDA description language. The platform requires the user to express system properties to be observed and to integrate the known experimental data into the system. As a result, the platform automatically extrapolates the system parametrization to reproduce, in a semi-quantitative way, the experimental results, to simulate the model under different conditions and, thus, to make easier the analysis of the dynamics that regulate the system. To evaluate both the feasibility and the performances, we applied the platform to model the purine metabolism and to reproduce the metabolomics data obtained from naive lymphocytes and autoreactive T cells implicated in the induction of experimental autoimmune disorders

    SystemC implementation of Stochastic Petri Nets for Simulation and Parametrization of Biological Networks

    No full text
    Model development and simulation of biological networks is recognized as a key task in Systems Biology. Integrated with in-vitro and in-vivo experimental data, network simulation allows for the discovery of the dynamics that regulate biological systems. Stochastic Petri Nets (SPN) have become a widespread and reference formalism to model metabolic networks thanks to their natural expressiveness to represent metabolites, reactions, molecule interactions as well as simulation randomness due to system fluctuations and environmental noise. In literature, starting from the network model and the complete set of system parameters, there exist frameworks that allow for the dynamic system simulation. Nevertheless, they do not allow for automatic model parametrization, which is a crucial task to identify, in-silico, the network configurations that lead the model to satisfy specific temporal properties. To cover such a gap, this work first presents a framework to implement SPN models into SystemC code. Then, it shows how the framework allows for automatic parametrization of the networks. The user formally defines the network properties to be observed and the framework automatically extrapolate, through Assertion-based Verification (ABV), the parameter configurations that satisfy such properties. We present the results obtained by applying the proposed framework to model the complex metabolic network of the purine metabolism. We show how the automatic extrapolation of the system parameters allowed us to simulate the model under different conditions, which led to the understanding of behavioural differences in the regulation of the entire purine network. We also show the scalability of the approach through the modelling and simulation of four biological networks, each one with different structural characteristics
    corecore