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Tumors are not a simple aggregate of transformed cells but rather a complicated
ecosystem containing various components, including inltrating immune cells, tumor-
related stromal cells, endothelial cells, soluble factors, and extracellular matrix proteins.
Proling the immune contexture of this intricate framework is now mandatory to develop
more effective cancer therapies and precise immunotherapeutic approaches by identifying
exact targets or predictive biomarkers, respectively. Conventional technologies are limited
in reaching this goal because they lack high resolution. Recent developments in single-cell
technologies, such as single-cell RNA transcriptomics, mass cytometry, and
multiparameter immunouorescence, have revolutionized the cancer immunology eld,
capturing the heterogeneity of tumor-inltrating immune cells and the dynamic complexity
of tenets that regulate cell networks in the tumor microenvironment. In this review, we
describe some of the current single-cell technologies and computational techniques
applied for immune-proling the cancer landscape and discuss future directions of
how integrating multi-omics data can guide a new “precision oncology” advancement.
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INTRODUCTION

Cancer is one of the leading causes of death worldwide, accounting for nearly 10 million deaths in
2020 (https://www.who.int/news-room/fact-sheets/detail/cancer). Unfortunately, the pandemic
COVID-19 will have consequences for cancer patients in coming years, since it has been
associated with delays in diagnosis as well as interruption of therapeutic treatments and follow-
up care. Hence the number of cancer victims will increase in the near future. Identifying cancer as a
genetic disease characterized by a set of genomic aberrations, including in-frame insertions or
deletions, missense amino acid changes, and large copy number variations, initially ingrained a
“cancer cell-centric” vision in the scientic community where cancer cell-intrinsic properties
exclusively drove tumorigenesis (Reddy et al., 1982; Santos et al., 1984; Lengauer et al., 1998;
Futreal et al., 2004; Tomlins et al., 2005; Hanahan and Weinberg, 2011). Therefore, recognizing
driver gene modications has been a central aim of cancer research over the past 30 years, resulting in
global initiatives such as The Cancer Genome Atlas (TCGA) (https://www.cancer.gov/about-nci/
organization/ccg/research/structural-genomics/tcga) and the Catalog of Somatic Mutations in
Cancer (COSMIC) (Tate et al., 2019) which include a broad collection of large-scale, systematic
sequencing studies that constitute comprehensive catalogs of mutational abnormalities in the major
tumor types. More than 100,000 somatic mutations in cancer genomes have been identied in the
quarter-century since the rst somatic mutation was reported (Zack et al., 2013), opening a new age
for the classication and treatment protocols of some cancers, such as breast (Cancer Genome Atlas,
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2012b; Ciriello et al., 2015), cervical (Cancer Genome Atlas
Research Network, 2017), colorectal (Cancer Genome Atlas,
2012a), pancreatic (Consortium, 2020), gastric (Cancer
Genome Atlas Research, 2014a), prostate (Cancer Genome
Atlas Research, 2015), and lung carcinomas (Cancer Genome
Atlas Research, 2012; Cancer Genome Atlas Research, 2014b).

In addition to the study of genetic diversity as a source of
tumor cell heterogeneity, stable epigenetic changes in cancer have
been received intense interest since they derive from poised or
initiated chromatin states of several genes that can modulate
expression of different pathways (Brown et al., 2014). Indeed,
alterations of cellular activities, such as cell growth and
differentiation, can be driven by epigenetic events that involve
DNA methylation, histone modication, the readout of these
modications, chromatin remodeling and the effects of
noncoding RNA (Feinberg et al., 2016). These alterations are
temporary or yet long-lasting and they impact on tumorigenesis.
For instance, aberrant DNA methylation has been, generally,
associated with cancer development by inactivating gene
transcription or repressing gene transcription and affecting
chromatin structure (Baylin and Jones, 2011; Hanahan and
Weinberg, 2011). Indeed, some gene promoters, especially key
tumor suppressor genes, are unmethylated in normal tissues and
highly methylated in cancer (Baylin and Jones, 2011).
Interestingly, DNA methylation in cancer has generally been
associated with tumor size (Feinberg et al., 2016) as well as with
drug resistance and predicting response to treatment (Brown
et al., 2014). Therefore, the comprehensive genetic and epigenetic
analysis of cancer genomes has been for many years the most
effective way to identify causative changes involved in
tumorigenesis.

Despite the achievement of these extraordinary milestones in
deciphering cancer cell biology, new insights demonstrate that
aberrant genetic proles of transforming cells alone are required
but insufcient to nurse tumor development and progression.
Indeed, cancer cells need to alter the stromal framework of the
microenvironment to manipulate diverse physiological processes,
such as promoting angiogenesis and vasculogenesis, to provide
adequate nutrients and oxygen, and alter immune responses to
avoid activating tumor-ghting elements, such as cytotoxic T
lymphocytes (CTLs) (Hanahan and Weinberg, 2011). Therefore,
“cancer-cell extrinsic” factors, such as local inammation,
metabolic switch, and immunity, are critical in fueling cancer
growth. At this point, the key question is whether these extrinsic
factors are independent of the genetic prole of cancer cells. A
cornerstone study demonstrated a remarkable difference in the
composition of tumor-inltrating leukocytes in different tumor
types by analyzing data on clinical outcomes and gene expression
of 18,000 human tumors (Gentles et al., 2015). Interestingly,
memory CD4+ T lymphocyte frequency correlated positively with
a favorable outcome in lung cancer patients, whereas the same cell
subset was associated with a worse outcome in patients affected
with bladder tumors (Gentles et al., 2015), suggesting that cancer
cell-intrinsic features can dictate the immune landscape of the
tumor microenvironment (TME). Indeed, oncogene-driven
modications can alter tumor immunogenicity in a completely
different way. Ongoing mutational processes generate either

cancer neoantigens capable of activating tumor-eliminating
immune cells (Balachandran et al., 2017; Luksza et al., 2017;
Keenan et al., 2019) or produce immune soluble factors such as
interleukins (e.g., IL-6, IL1-β), growth factors (e.g., granulocyte-
macrophage colony-stimulating factor (GM-CSF)), and
chemokines (e.g., CCL4), capable of differentiating immune
cells into pro-tumor elements (Bronte et al., 2006; Pylayeva-
Gupta et al., 2012; Calcinotto et al., 2018; Fiore et al., 2018; Vitale
et al., 2019; Hofer et al., 2021). Host immune cells also inuence
cancer progression (Schreiber et al., 2011). The notion that
tumors derived from immunodecient hosts are more
immunogenic than those derived from immunocompetent
mice allowed us to hypothesize that the immune system
actively shapes cancer cells, promoting the acquisition of
genetic aberrations that can compromise cancer cell
immunogenicity, favoring tumors escaping immune attacks.
Several clinical and pre-clinical observations have validated the
cancer immunoediting theory. For instance, two large studies
demonstrated that tumor-inltrating immune subsets in
colorectal cancer were signicant independent prognostic
markers as well as microsatellite instability, long interspersed
nucleotide element-1 (LINE-1) hypomethylation, and BRAF
mutations (Ogino et al., 2009; Nosho et al., 2010). Moreover,
the linear correlation between the density of effector memory
CTLs at the site of the primary tumor and the survival of patients
explicitly revealed the importance of TME immunity in cancer
control (Galon et al., 2006; Fridman et al., 2017). Thus, the
denition of the cancer genome and immune landscape of the
TME is hierarchically equivalent and complementary to predict
disease progression and therapeutic outcome.

Immune cell heterogeneity and the presence of various cell
subsets complicate TME immune proling (Binnewies et al.,
2018). Moreover, the spatial distribution of immunity within
the tumor mass is a critical parameter that signicantly inuences
immune cells acquiring pro- or anti-tumor functions (Bindea
et al., 2013; Sautes-Fridman et al., 2019). A multi-omic
perspective considering genomics, transcriptomics,
epigenomics and proteomics is necessary to unveil the
immune complexity of the TME (Figures 1A–D).
Unfortunately, traditional technologies used to evaluate the
immune landscape of the TME, such as
immunohistochemistry (IHC), ow cytometry (FC), and bulk
analysis of genomic, transcriptional, and proteomic analyses,
have several limitations, such as large amount of biological
material requirements, fewer parameters tested simultaneously,
and low analysis resolution (Peregrin et al., 1973; Bendall et al.,
2012; Abel et al., 2014). Recently, high-dimensional single-cell
techniques (Finotello and Eduati, 2018; Chen G. et al., 2019; Gohil
et al., 2021) have revolutionized the approach to decipher the
cellular diversity, cell interactions and dynamics that exists in the
TME and heterogeneity across patients by resolving cell subset
complexity at the single-cell level using unsupervised clustering to
identify potential unknown subpopulations of cells within the
populations under study (Thorsson et al., 2019; Wagner et al.,
2019; Zhao J. et al., 2020; Kieffer et al., 2020; Cheng et al., 2021).
Here, we review how single-cell technologies (Figure 1E) and
related computational techniques have improved our knowledge
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about the TME and discuss future applications of these cutting-
edge techniques in immune-oncology to develop more effective
personalized immunotherapy.

SINGLE-CELL TECHNOLOGIES TO STUDY
THE TME

Single-Cell Genomics
Several studies have demonstrated the connection between the
tumor mutations and the immune composition or TME.
Deciphering the complexity of the mutational landscape of
tumor cell clones and sub-clones that underlies intratumor
heterogeneity is necessary to understand tumor patient lethal
outcomes, therapeutic failures, and drug resistance
(McGranahan and Swanton, 2017). Single-cell genomics
technologies can make an important contribution to this

goal. However, the study of tumor clonality by analyzing
single-nucleotide variations (SNVs) and copy number
variations (CNVs) at the single-cell level is challenging.
Most methods for creating single-cell libraries rely on
whole-genome amplication (WGA) to overcome the
inability of sequencing technologies to capture single-cell
DNA molecules in low amounts of material. Since the rst
method based on degenerate oligonucleotide-primed PCR
(DOP-PCR) (Telenius et al., 1992), several methods have
been developed to increase the coverage and uniformity of
the genome to allow both SNVs and CSVs to be studied within
the same experiment (Dean et al., 2001; Zong et al., 2012),
given the importance of the WGA step. More recent methods
based on tagmentation (Adey et al., 2010), such as direct
library preparation (DLP) (Zahn et al., 2017), and linear
amplication via transposon insertion (LIANTI) (Chen
et al., 2017), outperformed WGA methods in terms of

FIGURE 1 |Multi-omic perspective to study the features of the TME. (A)Genomics analysis informs about how the tumor mutational landscape inuences the TME,
favoring, for example, the production of cytokines (e.g., IL-6, IL1-β) and growth factors (e.g., GM-CSF) inducing the proliferation of suppressive myeloid cells and the pro-
tumor differentiation of antigen-presenting cells. (B) Transcriptomic analysis enables to inspect the transcriptional machinery of the single cells of the TME, deciphering,
for example, developmental trajectories, cell states and cell-cell interactions. (C) Epigenomic analysis reveals how specic switches such as histone methylation
and chromatin dynamics regulate different mechanisms capable to interfere with anti-tumor immune recognition and effector functions. (D) Proteomics provides
information about the state of activation of the immune cells of the TME looking at the expression of immunomodulatory proteins such as checkpoint inhibitors (e.g., PD-
L1, CTLA-4). Spatial proteomics gives additional information about the localization of the cells allowing, for example, to identify cell that interact in the TME. (E) Venn
diagram depicting single-cell technologies to study single (non-overlapping sets) or multimodal (overlapping sets) omics. Genomics, transcriptomics, epigenomics and
proteomics are represented as blue, red, green, and purple sets, respectively.
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accuracy, time, and cost, expanding potential future
application scenarios.

Finally, high-throughput methods capable of processing
thousands of single cells per experiment were introduced, such as

those based on microuidics and barcoding (SiC-seq) (Lan et al.,
2017), split-pool strategies (SCI-seq) (Vitak et al., 2017), high-
throughput versions of linear amplication via transposon
insertion (sci-L3) (Yin et al., 2019), and direct library preparation

FIGURE 2 | Representative single-cell technologies to study the TME. (A) 10x Genomics single-cell genomics involves two steps of encapsulation using the
microuidics system. In the rst step, cells are partitioned using a cell beads polymer. The obtained cell beads are lysed to denature the genomic DNA and a second step
on microuidics chip is performed to encapsulate cell beads with barcode gel beads. After collecting single cell GEMs, amplication and barcoding of fragments is
performed prior to breaking the emulsion and constructing the library for sequencing. (B) In 10x Genomics scRNA-seq, cells are encapsulated into droplets
together with barcoded beads. Next, reverse transcription (RT) is performed in the collected GEMs and barcoded cDNAs are amplied for library construction and
sequencing. (C) In 10x Genomics scATAC-seq, nuclei are transposed and encapsulated into droplets using themicrouidics chip. Next, the collected single nuclei GEMs
are linearly amplied, and barcoded accessible DNA fragments are obtained after breaking the emulsion. Finally, DNA fragments are ready for library construction and
sequencing. (D) In CyTOF, the cells are labeled using stable heavy metals, nebulized, and vaporized to form ion clouds through an argon plasma torch. Each cloud
passes through a quadrupole which performs a purication step, the remaining heavy ions are quantied by a time-of-ight (TOF) mass spectrometer that determines the
value of each marker. (E) In co-detection by indexing (CODEX), FFPE or FF tissues samples are stained with DNA-barcoded antibodies. Next, a multicycle reaction
characterized by iteratively imaging up to three antibodies and nuclear stain, stripping and hybridizing is performed. This process is performed for all antibodies. Finally,
raw images are processed and analyzed. (F) In CITE-seq, antibody-derived tags (ADTs) are used to bind the cells of interest. Next, cells are incapsulated into droplets
using a microuidics platform and after cell lysis in droplets, mRNAs and ADTs are barcoded during the RT. After amplication, cDNAs and ADTs are separated by size,
converted into two independent libraries that are, nally, pooled, and sequenced.
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(DLP+) (Laks et al., 2019). The aim of high-throughputmethodswas
introducing automation to increase the number of cells analyzed
while maintaining accuracy of genomic information. SiC-seq
exploits droplet microuidics to encapsulate cells into
microspheres in which to perform the reactions required for cell
and genome processing without compromising genomic DNA. SiC-
seq performs a series of steps to lyse the cells, fragment the genomes,
barcode the DNA fragments and sequence them after library
preparation. SCI-seq uses the strategy of transposase-based
combinatorial indexing (Adey et al., 2010) to obtain barcoded
libraries without using droplet microuidics. Sci-L3 addresses the
problem of genomic artifacts due to PCR amplication and low-
throughput using respectively linear amplication and a three-level
combinatorial indexing. DLP + takes advantage of specialized
hardware and software for imaging microscopy to capture
genomic information of thousands of cells per experiment. Given
the complexity in obtaining single cell genomic information,
commercial solutions such as those based on the 10x Genomics
droplet microuidics system have been also proposed to simplify
single-cell genomics data generation (Figure 2A). Single-cell
genomic technologies have been used, for example, for the
deconvolution of clonal cell clusters and tracing the evolutionary
trajectories of clonal breast cancer cells (Wang et al., 2014), the
identication of structural and mutational events of melanoma cell
line clones (Velazquez-Villarreal et al., 2020), and for an in-depth
view of the intratumoral copy number alteration (CNA)
heterogeneity present in breast cancer genomes (Baslan et al., 2020).

All these aspects offer a greater understanding of the
dynamics of the TME, especially in the cancer therapy
response context. For example, identifying clonal and sub-
clonal cell composition or the presence of specic mutated
subsets would be useful for stratifying patients to understand
whether they could benet from immunotherapy. In the
future, longitudinal studies coupled with other single-cell
omics could help to construct a more detailed map of clone
evolution kinetics and elucidate the time-dependent
mechanisms underlying therapy and the emergence of more
aggressive clones caused by selection pressures (McGranahan
and Swanton, 2015). Furthermore, these studies could also
suggest evolutionary time points with a favorable TME to
perform more effective therapeutic interventions. In the
future, the widespread use of single-cell genomics methods
will depend on improvements of the actual technical
limitations. Current technologies are not optimal to study
all the different genomic aberrations such as copy number
variations (CNVs), small indels, single-nucleotide variations
and structural variations (SVs) at the same time (Fan et al.,
2021). Advancements on the current protocols and
bioinformatics solutions will be critical for a wider adoption
of single-cell genomics by the scientic community.

Single-Cell Transcriptomics
Single-cell RNA-sequencing (scRNA-seq) is a key technique to
explore the TME. scRNA-seq has expanded the scenarios opened
by previous bulk RNA-seq technology to investigate the
transcriptome of single cells inside a biological sample. Despite
countless discoveries in the last decade due to the ability to

sequence millions of RNA fragments from a “bulk” of cells, it is
nowmandatory to look at the transcriptionmachinery of each single
cell to understand the complexity of the TME. Indeed, the possibility
of observing the expression of thousands of genes for each cell has
allowed us to resolve cell subset heterogeneity of the TME in an
unbiased way (Lambrechts et al., 2018; Zilionis et al., 2019).
Furthermore, scientists can go beyond merely characterizing cell
compositions and obtain information about cell state, differentiation
trajectories, and cellular pathway activation (Qian et al., 2020; Zhang
et al., 2020; Raghavan et al., 2021).

The TME is crucial for tumor cells to evade immune surveillance,
necessitating detailed identities of cancer, immune, and non-immune
cells. A central aspect in the ght against cancer requires an enhanced
understanding of the role of immune cells in cancer therapies,
especially in immunotherapy based on immune checkpoint
inhibitors (ICIs). Hence, in recent years, scientists have tried to
understand the reasons for the success or failure of
immunotherapy in relation to the immune features of the TME. It
is now clear that T cell inltration into tumor tissues is a key feature of
the immunotherapy response (Tang et al., 2016). However, the
presence of T lymphocytes is a necessary but insufcient condition
for an effective antitumor response. Indeed, the immunotherapeutic
reactivity of a tumor largely depends on the functional state of
inltrated T cells and the expression of specic drug-targetable
molecules, such as programmed cell death protein 1 (PD-1) and
cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), as well as and
the lymphocyte-activation gene 3 (LAG-3), which negatively regulates
T-cell proliferation and effector T-cell functions. Recently, a phase II/
III, global, double-blind, randomized study named RELATIVITY-
047, demonstrated that the dual inhibition of LAG-3 and PD-1, using
relatlimab and nivolumab, had a synergistic effect on progression-free
survival in melanoma patients highlighting the possibility to develop
more effective therapy by targeting different T cell activation brakes
(Tawbi et al., 2022). Furthermore, the expression of co-stimulatory
molecules, such as programmed death-ligand 1 (PD-L1), by cancer
cells and an inamed TME are crucial elements for an effective
immunotherapy response (Marigo et al., 2016; Duan et al., 2020; Ugel
et al., 2021). In contrast, the presence of myeloid-inltrating cells with
immunosuppressive features, such as myeloid-derived suppressor
cells (MDSCs) (De Sanctis et al., 2016) and a low frequency of
inltrating CD8+ T cells in the TME, correlate with tumors averse to
immunotherapy (Zhu et al., 2017; Li J. et al., 2018).

Cancer immunology discoveries have continued in parallel with
advancements in scRNA-seq technologies. Among others, methods
based on droplet microuidics and cellular barcoding, such as
InDrop (Klein et al., 2015), Drop-seq (Macosko et al., 2015), and
the 10x Genomics platform (Zheng et al., 2017) have gained
attention in recent years. Similarly to single-cell genomics
technologies, their success is due to the greater scalability offered
by droplet microuidics platforms that allow to isolate thousands of
cells in a short time (Figure 2B). A drawback of these technologies is
their low transcript coverage. Indeed, these methods cannot be used
to study, for example, splicing and enhancer RNAs at the single-cell
level (Hayashi et al., 2018) because they sequence only the 3’ end of
each transcript. In contrast, full-length technologies, such as
SMART-seq (Ramskold et al., 2012; Picelli et al., 2014) and
MATQ-seq (Sheng et al., 2017), have a higher accuracy level in
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transcript detection, allowing the study of gene variants and splicing
events at the cost of lower single-cell proling throughput.

Given the complexity of the TME in terms of cellular
heterogeneity, high-throughput scRNA-seq techniques have
been widely used in cancer studies because they can extract
thousands of cells from a biological sample. scRNA-seq has
been successfully used to decipher several mechanisms by
which the tumor can shape the microenvironment towards a
hostile ecosystem characterized by exhausted inltrating T cells,
suppressive myeloid cell subsets, cells with pro-tumor
differentiation programs, and aberrant cell-cell interaction
networks (Guo et al., 2018; Elyada et al., 2019; Davidson et al.,
2020; Kim et al., 2020; Marigo et al., 2020; Wu et al., 2021; De
Sanctis et al., 2022). The integration of scRNA-seq data with
clinical patient information has further allowed us to dene
cellular and molecular signatures of the TME to explain the
response to immunotherapy or survival outcome in different
types of cancer (Jerby-Arnon et al., 2018; Sade-Feldman et al.,
2018; Ma et al., 2019; Peng et al., 2019; Di Pilato et al., 2021;
Zhang et al., 2021). These results motivate future applications of
scRNA-seq as a valuable tool for clinicians to perform TME
screening, stratication, and identication of new druggable
targets based on the integration of different patient datasets
(Giladi and Amit, 2017; Binnewies et al., 2018). Data
integration is of primary importance because transcriptional-
level results cannot be directly translated to the functional level,
requiring additional support and experimental validation at the
protein level.

Recently, scRNA-seq has been combined with the innovative
spatial transcriptomics (Zhang et al., 2022). This technology has
revolutionized the traditional RNA-uorescence in situ
hybridization (FISH) tool able to identify target messenger
RNA transcripts in tissue sections by-passing the absence of
selective antibodies for unknown candidates (Facciponte et al.,
2014; Cui et al., 2016). Indeed, this innovative approach allows to
visualize proles of RNA molecules in identied tissue regions,
including technologies based on micro-dissected gene expression,
in situ hybridization, in situ capturing and in situ sequencing
technologies (Calvanese et al., 2022; Nirmal et al., 2022; Wei et al.,
2022). This technology continues to aid the development of
human cellular atlases of cancer, the reclassication of the
immune landscape of TME, and overall, the identication of
important therapeutic targets.

Single-Cell Epigenomics
The epigenome is the complete atlas of chemical modications
that can induce changes in gene expression without modifying the
DNA sequence. Such modications involve DNA, RNA, and
histone proteins and can cause chromatin remodeling that can
turn genes “on” or “off”. Methylation and acetylation of histones
on lysine and arginine residues are the best-known epigenetic
mechanisms capable of enhancing or repressing gene
transcription, as exemplied by histone H3 on lysine 27
(H3K27ac) and histone H3 on lysine 9 (H3K9me)
modications. Other epigenetic mechanisms that provoke
chromatin remodeling include nucleosome positioning/
reorganization and DNA methylation.

Several studies have highlighted the ability of tumor cells to
induce epigenetic modications in TME-inltrating immune cells to
aid immune surveillance evasion. The epigenetic strategies
implemented by tumors to avoid immune surveillance are based
on the disruption of different anti-cancer immune mechanisms,
such as immune recognition, signal activation, and effector
functions. Common mechanisms exploited by tumors to evade
immune recognition and signal triggering include the epigenetic
silencing of major histocompatibility complex (MHC) genes and the
inhibition of cytokines and chemokines. For example, trimethylation
of H3K4 (H3K4me3) and H3K27 (H3K27me3) by polycomb
repressive complex 2 (PRC2) has been linked to MHC-I
repression and missed tumor recognition by CD8+ T cells
mediated by EED and EZH2 (Burr et al., 2019). Furthermore, the
lack of tumor-inltrating lymphocytes (TILs) in several human
cancers is associated with DNA methylation-induced epigenetic
silencing of CCL5 (Dangaj et al., 2019). An illuminating example
of how epigenetic modications can result in the loss of immune
effector function is the acetylation of H3K27 (H3K27ac). Indeed,
high H3K27ac levels have been linked to a TNF-NFKB1 pathway
capable of inducing CD47 upregulation and inhibiting macrophage
phagocytosis of breast cancer cells (Betancur et al., 2017).

Our understanding of the cancer epigenome has evolved
rapidly with the adoption of next-generation sequencing
(NGS). In this context, chromatin immunoprecipitation
followed by sequencing (ChIP-seq) and an assay for
transposase-accessible chromatin using sequencing (ATAC-
seq) have been widely used tools to study epigenetic
regulation. ChIP-seq is a method for studying the interactions
between proteins and DNA. It allows us to analyze chromatin
states induced by histone modications that alter gene
transcription. ATAC-seq measures chromatin accessibility by
directly deciphering its effects on gene transcription without
detailed histone modication and chromatin state
characterization. ChIP-seq and ATAC-seq have been used
successfully, for example, to link epigenetic features capable of
maintaining an immune cell-excluded TME and immunotherapy
resistance (Benci et al., 2016; Yang et al., 2021).

The advancements of these techniques are their single-cell
counterparts, scChIP-seq and scATAC-seq. Several cancer
studies have shown the utility of scChIP-seq or scATAC-seq
to study the epigenetic regulators responsible for tumor cell
heterogeneity (Grosselin et al., 2019; LaFave et al., 2020;
Taavitsainen et al., 2021). Other applications of single-cell
epigenomics include adopting scATAC-seq to uncover
chromatin regulators responsible for T cell exhaustion in the
TME of patients treated with immunotherapy (Satpathy et al.,
2019; Zhang et al., 2021). These examples motivate the use of
single-cell technologies to study cancer epigenetics.

In the future, it will be pertinent to understand the link
between epigenetic changes in the TME and cancer
progression and how to obtain a more effective therapy
response targeting epigenetic switches. One reason for the
growing interest in targeting the epigenome is the possibility
of identifying small molecules, such as proteolysis-targeting
chimeras (PROTAC) (Sakamoto et al., 2001), that can
indirectly interfere with aberrant gene expression, given the
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difculties in targeting oncogenic transcription factors, such as
Myc and p53 (Jones et al., 2016).

The dissemination of scChIP-seq studies depends on future
technological advances. Despite recent successful attempts to
improve scChIP-seq in terms of cellular sensitivity and data
sparsity (Kaya-Okur et al., 2019; Wang et al., 2019), the use of
this technology remains limited and largely relies on being able to
increase the number of sequenced reads per cell. In contrast,
scATAC-seq has a simpler and more efcient experimental
protocol that requires a lower number of cells. Furthermore,
introducing microuidics approaches (Figure 2C) has
dramatically improved the throughput compared to the
previous technology based on combinatorial cellular indexing
(sciATAC-seq) (Cusanovich et al., 2015). However, low per-cell
coverage remains a weakness, even for scATAC-seq, potentially
limiting the identication of signicant open chromatin sites,
especially in rare cell subsets (Ma and Zhang, 2020).

Single-Cell Proteomics
Despite the wide adoption of single-cell transcriptomics
technologies, single-cell proteomic approaches remain the key
tools for studying the functional status of TME cell populations.
Indeed, in addition to identifying proteins and related isoforms,
they allow us to recognize post-translational modications that
single-cell transcriptomics cannot capture.

FC is still a fundamental multiparametric technique for
identifying immune cell subsets within the TME based on
morphological characteristics and the expression of certain
proteins. FC also allows specic cell populations to be isolated
by cell sorting before analysis with other omics techniques. The
main limitation of FC is the number of parameters, usually
around 20, which can be intercepted simultaneously in the
same experiment because of signal overlap (i.e., spillover)
between the channels. This limits the number of cell-surface
proteins that can be identied and, consequently, the resolution
of identifying the related cell subsets present in the experiment.

A more advanced technology is Full Spectrum Flow
Cytometry (FSFC), an improvement of spectral ow cytometry
(SFC) (Robinson, 2004; Nolan et al., 2013). FSFC exploits high-
sensitive light detectors to measure the full spectral prole of
uorophores. This technology has a higher quality and resolution
than conventional FC, allowing to design multicolor panels up to
40 parameters useful for characterizing important aspects of the
immune context in cancer studies (Bonilla et al., 2020).

Another recent technology for single-cell proteomics is
cytometry by time-of-ight (CyTOF) (Bandura et al., 2009)
(Figure 2D). Compared to FC, CyTOF allows at least 40
markers per cell to be detected in a single run and is more
sensitive and less prone to errors (Bandura et al., 2009; Bendall
et al., 2011). The disadvantages of CyTOF compared to FC
include a lower acquisition ow rate, more critical sample
preparation to avoid contamination, and the inability to
perform cell sorting for populations of interest due to the nal
vaporization of the cells (Gadalla et al., 2019). CyTOF potentiates
better resolution of TME heterogeneity, which is particularly
important in the context of cancer immunology. For example,
CyTOF makes nding specic TIL subsets that correlate with

patient survival and response to immunotherapy, respectively, in
follicular lymphoma (Yang et al., 2020) and melanoma
(Subrahmanyam et al., 2018) possible. Furthermore, scientists
were able to localize the expression of the T cell inhibitory
molecule VISTA in CD68+ macrophages of human pancreatic
cancer (Blando et al., 2019) and retrieve information on the
composition, expansion, and activity of TILs in patients with
non-small cell lung cancer (NSCLC) (Sanmamed et al., 2021).
Since CyTOF dissects the cellular composition and the activation
status of the immune cells that surround and inltrate the tumor,
it is an effective tool for studying the TME immune landscape.
CyTOF and scRNA-seq allowed us to answer similar biological
questions. However, these two technologies are not
interchangeable. The main limitations of CyTOF are the
resolution and bias due to prior parameter selection. These
two aspects can limit the discovery of rare cell populations.
An obvious advantage of CyTOF is that protein expression
indicates specic functional states or activities of the cell that
in scRNA-seq must be validated with other techniques. Since
CyTOF is simpler than scRNA-seq and allows for better
discrimination of certain immune cell subsets (Kashima et al.,
2021), it represents a convenient method to monitor TME
features, such as cell subsets, activation states, and immune
checkpoint molecules in patient cohorts in clinical trials. It is
mandatory to rapidly standardize experimental procedures,
computational tools, and antibody panels to make results
comparable between different institutions to accomplish this
aim (Hartmann et al., 2019).

In CyTOF, protein identication strictly depends on the
availability of highly specic antibodies and the quality of their
interactions. Mass spectrometry-based methods, such as
SCoPE-MS and the improved version SCoPE2, have been
recently introduced to improve throughput and sensitivity
concerning the number of proteins detected in single cells
(Budnik et al., 2018; Specht et al., 2021). With SCoPE2, the
authors were able to dissect cellular heterogeneity by protein
expression and trace the differentiation of monocytes into
macrophage-like cells in the absence of specic cytokines.
This work is an important step towards future applications
of single-cell technologies based on mass spectrometry for
TME dissection, looking at the expression of thousands of
proteins.

Single-Cell Spatial Proteomics
An important aspect to consider in the study of the TME is its
spatial organization and heterogeneity. Indeed, like natural
ecosystems, tumor tissues can reveal strong heterogeneity in
relatively small spatial distances due to tumor cells adapting to
the microenvironment or through its remodeling (Yuan, 2016).
Several studies have emphasized the importance of considering
spatial heterogeneity in the TME. Some of these reports have
shown that the location, density, and spatial distribution of
immune cells are more robust markers for predicting patient
outcomes than traditional clinical parameters (Galon et al., 2006;
Maley et al., 2015). These facts motivated the development and
improvement of technological platforms for spatial analysis and
their use in dissecting the TME.
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IHC is a widely used technique for both basic research and
cancer diagnosis. It is used to localize cells that express specic
protein markers and study the spatial localization of cells in a
tissue slide. In conventional IHC (i.e., chromogenic IHC),
antibodies recognize specic antigens in the tissue and are
conjugated to an enzyme to catalyze a color-producing
reaction. A major problem with conventional IHC is that it
only allows labeling of one marker for tissue sections. This
severely limits understanding the cellular complexity of the
TME. Several multiplex platforms have been introduced over
the years to facilitate the analysis of cellular composition,
functional states, and cell-cell interactions within the TME to
address this problem. Multiplex IHC (mIHC) methods based on
chromogens (Remark et al., 2016; Tsujikawa et al., 2017),
uorophores (Gerdes et al., 2013; Gorris et al., 2018; Viratham
Pulsawatdi et al., 2020), metal-tagged antibodies (Angelo et al.,
2014), and DNA barcodes (Goltsev et al., 2018; Manesse et al.,
2020) (Figure 2E) increased the number of biomarkers to be used
simultaneously by up to 50 in a single tissue section. The
introduction of more effective mIHC technologies has been
accompanied by the development of new software solutions
capable of performing sophisticated analyses of digitalized
images (e.g., segmentation and ltering) and support the work
of pathologists in sample processing.

mIHC technologies have been used in different types of cancer
to better understand the spatial architecture of the TME and how
it can affect the response to therapy and clinical outcomes. For
example, in breast cancer, mIHC was used to obtain detailed
information on the spatial localization, cellular composition, and
expression of regulatory proteins in the TME and recover
clinically relevant characteristics (Keren et al., 2018; Jackson
et al., 2020). In colorectal cancer, mIHC has been used to
decipher the complex dynamic interplay between TME
components (Schurch et al., 2020). In human pancreatic
ductal adenocarcinoma (PDAC), mIHC was applied to assess
the density and spatial distribution of myeloid and lymphoid cells
in the TME and its correlation with the clinical outcome of
patients (Liudahl et al., 2021).

Single-Cell Multimodal Omics
In cancer, single-cell omics aims to dissect all aspects of cellular
machinery to understand its functional status and relationship
with other TME cells. The use of single-cell omics technologies to
study single-cell modalities, such as transcriptomics and
proteomics, has increased our knowledge of cell biology in
cancer without precedent. However, cells are dynamic entities
whose states are characterized by a complex interplay of genomic,
transcriptomic, epigenomic, and proteomic features that non-
linearly contribute to the TME’s heterogeneity. The new Frontier
is the simultaneous measurement of multiple modalities of the
same cells to gain a better understanding of cellular andmolecular
mechanisms in cancer. In recent years, this has motivated the
introduction of numerous single-cell approaches capable of
combining two or more modalities between genomics,
transcriptomics, epigenomics, and proteomics (Figure 1E).
Multimodal single-cell approaches have evolved from those
using tubes or microwells of plates to measure single cells

(i.e., low-throughput) to those that take advantage of droplet-
based technologies or combinatorial DNA barcoding strategies
(i.e., high-throughput), allowing increased scalability and reduced
costs per run (Zhu et al., 2020). Almost all current single-cell
multimodal omics technologies extract the transcriptome of each
cell. Low-throughput multimodal omics with transcriptomics
paired with genomics are gDNA-mRNA sequencing (DR-seq)
(Dey et al., 2015) and genome and transcriptome sequencing
(G&T-seq) (Macaulay et al., 2015), while transcriptomics and
epigenomics are obtained with single-cell methylome and
transcriptome sequencing (scM&T) (Angermueller et al.,
2016), scMT-seq (Hu et al., 2016), single-cell nucleosome,
methylation, and transcription sequencing (snNMT-seq)
(Clark et al., 2018), single-cell nucleosome occupancy,
methylome, and RNA expression sequencing (scNOMeRe-seq)
(Wang et al., 2021), and single-cell chromatin accessibility and
transcriptome sequencing (scCAT-seq) (Liu et al., 2019). An
interesting multimodal omics technique integrating
transcriptomics, genomics, and epigenomics is single-cell triple
omics sequencing (scTrio-seq) (Hou et al., 2016).

In high-throughput multimodal omics, transcriptomics is paired
with epigenomics in parallel analysis of individual cells for RNA
expression and DNA accessibility by sequencing (Paired-seq) (Zhu
et al., 2019) and single-nucleus chromatin accessibility and mRNA
expression sequencing (SNARE-seq) (Chen S. et al., 2019).
Furthermore, transcriptomics is paired with epitopes in RNA
expression and protein sequencing (REAP-seq) (Peterson et al.,
2017) and cellular indexing of transcriptomes and epitopes by
sequencing (CITE-seq) (Stoeckius et al., 2017) (Figure 2F).
CITE-seq protocol has been extended to obtain transcriptomics
and proteomics of the same cells after CRISPR-Cas9 genetic
perturbations in expanded CRISPR-compatible CITE-seq
(ECCITE-seq) (Mimitou et al., 2019) and Perturb-CITE-
sequencing (Perturb-CITE-seq) (Frangieh et al., 2021). These
techniques perform genetic perturbations through single gRNAs
(sgRNA) linking them to transcriptomic and proteomic proles of
the same cells to allow demultiplexing. ECCITE-seq combines the
use of CRISPR libraries and cell hashtags (Stoeckius et al., 2018) to
perform genetic perturbations and pool together different
experimental samples. Perturb-CITE-seq uses a method based on
CROP-seq (Datlinger et al., 2017) to express sgRNAs and to link
them to transcripts and surface proteins of single cells. Other
interesting multimodal omics techniques that do not include
transcriptomics are, for example, those that provide different
layers of epigenomics (Guo et al., 2017; Pott, 2017), epigenomics
paired with genomics, and CRISPR-Cas9 genetic perturbations
(Rubin et al., 2019; Tedesco et al., 2021).

Low-throughput multimodal omics were successfully adopted
in cancer studies to better understand heterogeneity, complexity,
and the evolution of cancer cells by integrating genomic,
epigenomic, and transcriptomic features of the same cells
(Macaulay et al., 2015; Hou et al., 2016; Bian et al., 2018; Zhu
et al., 2021). However, the possibility of obtaining only tens or
hundreds of cells provided by low-throughput multimodal omics
and their costs have limited their application in TME studies.

Furthermore, given the importance of immunomodulatory
proteins (e.g., PD-L1, CTLA-4) in response to cancer
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immunotherapy, high-throughput multimodal technologies
combining transcriptomics and proteomics have been applied
in TME studies. In a recent report, CITE-seq successfully
discovered new macrophage populations expressing PD-L1
and PD-L2 surface proteins linked to survival in breast cancer
(Wu et al., 2021). In other studies, ECCITE-seq and Perturb-
CITE-seq were used to dene new clinically relevant resistance
mechanisms to ICIs in human cancer cell lines and melanoma by
exploiting CRISPR-Cas9 screens with multimodal single-cell
readouts (Frangieh et al., 2021; Papalexi et al., 2021).
Furthermore, the possibility of having both transcript and
protein expression from the same cells also helped scientists
increase the robustness of their scRNA-seq results. Indeed,
they were able to validate the expression of known protein
markers and identify novel proteins expressed by immune
subsets in different human cancers (Leader et al., 2021; Pombo
Antunes et al., 2021). The progress in single cell technologies will
guarantee in the near future the possibility to explore at single cell
level other omics such as glycomics, lipidomics, metabolomics
and microbiomics able to highlight essential cell functions and
biological proprieties of tissue components generating a more
detailed map of the immune landscape of TME.

COMPUTATIONAL APPROACHES TO
ANALYZE SINGLE-CELLDATAOF THE TME

With the widespread use of high-dimensional biological datasets,
the scientic community designed specic computational
techniques capable of extracting knowledge from complex
multi-omic data. Compared to its bulk counterpart, single-cell
data analysis is particularly challenging because of the high
dimensionality given by the number of cells and markers and
the presence of peculiar technical and biological factors that are
important to keep in mind. For example, an underestimated
problem in single-cell analysis is computational power. As the
number of cells increases, all the data analysis steps become more
computationally intensive, and some of these steps may require
more scalable computational methods and architectures.
Machine learning (ML) techniques, especially deep learning
(DL), are an emerging class computational methods in single-
cell data analysis for their capability to manage complex datasets
and the possibility to be implemented into high-parallel
architectures (e.g., GPU). Additionally, single-cell data is
noisier and more subject to batch effects compared to the bulk
counterpart due, for example, to more critical experimental
procedures such as single cell isolation, the technical
variability in the number of reads and cells sequenced in each
sample, and the biological variability caused by heterogeneity in
cell composition. TME studies particularly exemplify the latter
aspect, in which the presence of cancer and immune and non-
immune cells contributes to the complexity of the experiment.
Potential confounding factors must be removed or included in
statistical models during data analysis. Typical computational
steps performed during single-cell data analysis include 1)
preprocessing and harmonization steps in which multiple
datasets or modalities are combined to perform an integrated

analysis after the removal of outliers or low-quality cells, 2)
applying dimensionality reducing techniques useful for
visualization, 3) clustering, 4) cell annotation, and 5) cellular
and molecular functional analysis.

Pre-Processing and Harmonization of
Single-Cell Data
Pre-processing is essential before the downstream analysis of
single-cell data. This phase encompasses many computational
steps ranging from raw to processed data through various types
and le formats. Sequencing- and mass spectrometry-based
single-cell data involve several steps before quantifying the
features-by-cell matrices. Sequencing-based methods have
common procedures, including processing raw FASTQ les
containing the reads and alignments to the reference genome
or transcriptome. Next, for both sequencing-based and mass
spectrometry-based approaches, feature detection and
quantication (e.g., exons, peaks, and peptides) are common
stages to obtain the nal features for analysis. Prior to matrix
processing and analysis, preliminary quality control is required to
assess, for example, the quality of the reads, the percentage of
valid barcodes, and reads mapped to the genome. The software
suite of specic platforms (e.g., 10x Genomics Cell Ranger) often
provides this information. Next, the matrices are reduced by
removing low-quality and outlier cells. For example, cells with an
unexpectedly high or low number of features detected or with
poor quantication are removed from further analyses. In
droplet-based single-cell technologies, a ltering step removes
cells with a hybrid transcriptome (e.g., doublets), that is, two or
more cells incapsulated in the same droplet, using specialized
software (McGinnis et al., 2019; Wolock et al., 2019; DePasquale
et al., 2020). A specic scRNA-seq pre-processing step involves
removing cells with a high percentage of mitochondrial and
ribosomal genes expressed because they are usually considered
low quality. Thresholds on mitochondrial and ribosomal
expression must be chosen carefully, especially when dissecting
the immune complexity of the TME, to avoid removing certain
cell subsets (Zilionis et al., 2019; Osorio and Cai, 2021;
Subramanian et al., 2021).

In FC and CyTOF, pre-processing steps and downstream
analyses are typically performed using ow cytometry
standard (FCS) les. Typical FC pre-processing steps
include data compensation and transformation (e.g.,
biexponential, generalized Box-Cox) to correct the channel
spillover and the effects of outliers and distorted distributions,
respectively. Like droplet-based single-cell technologies, an
important FC pre-processing step involves removing
doublets. This happens when the cytometer cannot
discriminate between 2 cells because they pass too closely
through the trigger laser. In FC, single cells are
differentiated at the beginning of the gating strategy using
the 2D plot with Forward Side Channel-Aria (FSC-A) and
Forward Side Channel-Height (FSC-H). Cells that do not
display a linear correlation of these two parameters are
marked as doublets and are excluded from the analysis. In
CyTOF, the discrimination of doublets is more complex
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because the cell size parameters used in FC are not available.
Here, DNA intercalators and event length are used to obtain
single cells (Gadalla et al., 2019). In spatial proteomics, the pre-
processing step involves some adjustment (e.g., illumination
and contrast correction) to the images before cell identication
through the segmentation process. After segmentation, the
cells are classied and quantied for subsequent statistical
analysis.

As part of the pre-processing phase, normalization is a
fundamental procedure in single-cell data analysis to make all the
cells comparable. In sequencing-based single-cell data, the variability
of reads sequenced per cell and data sparsity have been carefully
considered in computational pipelines to avoid technical effects
confounding biological heterogeneity. In scRNA-seq, this has
motivated the design of different normalization methods, for
example, those based on the estimation of size factors to correct
gene expression (Lun et al., 2016;Wolf et al., 2018; Stuart et al., 2019)
and others based on linear regression (Bacher et al., 2017; Yip et al.,
2017; Hafemeister and Satija, 2019). Text-mining techniques are
used to normalize scATAC-seq datasets (Cusanovich et al., 2015;
Cusanovich et al., 2018; Fang et al., 2021). Normalization is also an
important step in single-cell proteomics data to remove the technical
variability due, for example, to differences in instrument
performance over acquisition time, particularly in mass cytometry
(Rybakowska et al., 2020). Bead-based normalizationwas introduced
to correct these technical artifacts (Finck et al., 2013). This method
uses information obtained through standard calibration beads that
track changes in the signal over the acquisition time to adjust the
marker values. However, technical and biological differences may
arise from the disparate technical and biological aspects of data
generation in single-cell experiments. A key step in studying the
TME through single-cell technologies is the study of changes in the
cell subset composition of different individuals. Harmonization
techniques have been proposed for single-cell data to facilitate the
comparison of multiple samples. These techniques aim to overcome
noise due to the variability among cells, individuals, species, and
protocols trying tomaintain the true biological signals. An important
advantage of data harmonization is the possibility to aggregate
multiple samples into a single dataset making faster identifying
shared or sample-specic cell subsets. This approach makes the
analysis simpler and less error prone because it avoids processing
each dataset individually or merging them without considering
potential biases. A drawback of harmonization is the possibility
to lose true biological signals due to the “correction” procedure. In
single-cell proteomics, methods have been introduced to correct
unwanted variability in FC and mass cytometry, such as aligning the
marker intensity distributions across samples or performing cell-
type-specic normalization using shared controls across multiple
batches (Hahne et al., 2009; Finak et al., 2014; Van Gassen et al.,
2020). Several methods ranging frommore conventional methods to
highly scalable and fast ML approaches have been proposed to align
and make cell subsets comparable to gene expression and chromatin
accessibility of different datasets, considering diverse technical and
biological variation sources (Luecken et al., 2022). The advent of
single-cell multimodal omics has posed additional computational
challenges in extrapolating useful information from the different
layers measured for each cell. This has motivated the introduction of

harmonization methods for performing a joint analysis, such as
clustering, to exploit the power given by all available cell modalities
(Argelaguet et al., 2020; Wang et al., 2020; Gayoso et al., 2021; Hao
et al., 2021; Singh et al., 2021; Zuo and Chen, 2021). It is worth to
remark that DL approaches (e.g., deep generative models) represent
a signicant part of harmonization methods for single-cell datasets.
Their power is given by their capacity to learn complex mechanisms
of biological systems from multiple biological datasets and
modalities (Li Y. et al., 2018). This makes them important tools
to manage the increasing complexity of single-cell data.

Dimensionality Reduction, Clustering, and
Cell Annotation of Single-Cell Data
Single-cell datasets are intrinsically high dimensional. A common
step in single-cell data analysis is projecting the data into a low-
dimensional space using dimensionality reducing techniques to
dissect the complexity and understand the TME’s cellular
composition, cell states, and trajectories. The dimensions
calculated by these algorithms are useful for visualizing the cell
subsets, usually using 2D scatter plots, and as inputs of other
computational techniques. Methods such as principal component
analysis (PCA) and singular value decomposition (SVD) are
commonly used to decompose high-dimensional datasets into
several important axes of variation. Owing to their linearity, these
methods cannot accurately represent the complex structure of
single-cell data. However, the dimensions extracted by these
approaches are commonly injected into other dimensionality
reducing methods, such as t-distributed stochastic neighbor
embedding (t-SNE) and uniform manifold approximation and
projection (UMAP), to improve their accuracy (Kobak and
Berens, 2019; Baek and Lee, 2020; Kobak and Linderman, 2021).
t-SNE and UMAP are currently the most commonly used
techniques for visualizing single-cell datasets intuitively. With
these methods, each cell is represented as a point in a 2D scatter
plot, where the proximity to other cells indicates a similarity in
expression proles. These algorithms can position cells in a
biologically meaningful way allowing the correct interpretation of
the data. A vital property of these algorithms is to preserve the local
and global structure of the data, namely, the distances between
points (e.g., cells) within the same cluster and between different
clusters. The local topology ensures that the cells in a cluster are
homogeneous and represent, for example, the same immune cell
subset. In contrast, the global structure of data can provide important
biological insights into cell subset relationships, such as monocyte-
to-macrophage or epithelial-to-malignant cell transitions, and it is
the most debated feature of t-SNE and UMAP. Although previous
reports have shownUMAP to be better than t-SNE in preserving the
organization of cell clusters (Becht et al., 2018), recent studies suggest
that more effective t-SNE parameterizations make it as good as
UMAP for conserving global data geometry (Kobak and Berens,
2019; Kobak and Linderman, 2021). Considering the importance of
studying the state transition and differentiation trajectories of single
cells, other dimensionality reducing approaches have been proposed
to better preserve the global features of the data and, consequently,
provide biologically relevant information (Weinreb et al., 2018;
Moon et al., 2019). After dimensionality reduction, clustering and
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cell annotation are usually the next steps in single-cell data analysis.
Clustering algorithms are mainly used to dene homogenous cell
subsets to be annotated using specic molecular measures, such as
gene expression, proteins, or peak counts. In single-cell multimodal
omics data, all the provided molecular measures can be combined to
perform an integrated analysis, as the previous section introduced.

Among the large toolboxes of clustering techniques made
available by computational sciences, several methods are more
commonly used in the single-cell data analysis context. Graph-
based clustering has become very popular in single-cell data analysis
owing to its minimal required assumptions compared to other well-
known techniques, such as k-means. These include methods based
on clique detection (Xu and Su, 2015), spectral clustering (Ng et al.,
2002), and community detection algorithms (Blondel et al., 2008;
Waltman and Van Eck, 2013; Traag et al., 2019). The latter has been
highly appreciated in recent years because they can scale the number
of cells and be implemented in popular R and Python packages, such
as Seurat (Stuart et al., 2019), Monocle (Qiu et al., 2017), and
SCANPY (Wolf et al., 2018). In recent years, ML techniques based
on self-organizing maps (SOMs) (Kohonen, 1990) have also been
introduced for both mass cytometry (Van Gassen et al., 2015) and
scRNA-seq data (Camp et al., 2017). These tools usually provide
useful visualization features for an intuitive interpretation of
expression similarity among cell clusters.

Cluster analysis is usually used for cell annotation following an
iterative process in which each cluster is mapped to a biologically
relevant cell type by observing the expression of multiple markers.
Several clustering algorithms allow us to set a level of granularity
(i.e., resolution) based on the level of detail at which the cell subsets are
dissected. The use of clustering to annotate cells has several drawbacks.
For example, the number of clusters may be overestimated,
underestimated, or not reproducible. Furthermore, manual
annotation may be error-prone or not correspond to similar
annotated cells in the literature. Alternatively, several classication
techniques have been introduced in recent years to perform automatic
cell annotation (ZhaoX. et al., 2020) based onwell-annotated reference
datasets containing, for example, uorescence-activated cell sorting
(FACS)-sorted cell populations. These methods typically use bulk or
single-cell references from large general-purpose (Consortium, 2012;
Mabbott et al., 2013; Martens and Stunnenberg, 2013), immune-
specic (Heng et al., 2008), or tumor-specic atlases (Rozenblatt-
Rosen et al., 2020) to infer the cell types present in dataset by
correlating their expression proles. Most of these tools make
feature selections before performing cell classications. However,
the unbiased nature of these approaches makes them critical for
improving the reproducibility and consistency among single-cell
studies. With the spread of large-scale disease datasets, an
important goal will be to integrate these datasets into harmonized
and batch-corrected references to be queried efciently. Scalable
architectures based on ML will be valuable tools for integrating
human references to study the TME (Lotfollahi et al., 2022).

Analysis of Cell Function and Differentiation
of Single-Cell Data
Analyzing changes in the cellular composition of the TME is
necessary for understanding the various mechanisms of cancer.

However, a deep molecular characterization is crucial for
identifying the key drivers of functional cellular changes.
Differential expression (DE) analysis is the main statistical
technique for detecting functional perturbations caused by
changes in gene or protein expression, chromatin accessibility,
and genomic aberrations. Although general-purpose statistical
tests or DE methods for bulk datasets have been widely used for
DE analysis of different single-cell omics datasets, several
specialized techniques have been adopted over the years to
deal with the heterogeneity and sparsity of scRNA-seq
(Kharchenko et al., 2014; Finak et al., 2015). However, DE
methods based on pseudo-bulk aggregation of biological
replicates have recently gained attention for their capacity to
extrapolate more robust results than general-purpose and
specialized single-cell DE methods (Squair et al., 2021). After
differential expression analysis, a typical task in the study of the
TME is to extract a list of biological processes linked to the
molecular changes induced by cancer or therapy in different cell
subsets. Methods for gene set analysis that have been widely used
in recent years for bulk data, such as over-representation, are
commonly used in single-cell data. These approaches take into
account a list of differentially expressed molecules and gene sets
from Gene Ontology (GO) (Gene Ontology, 2015), the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al.,
2016), Reactome (Fabregat et al., 2018), and the Molecular
Signature Database (MSigDB) (Liberzon et al., 2011) to
identify altered molecular pathways.

In addition to molecular changes concerning pathway regulation,
characterizing molecular states between different cells is a common
step in single-cell data analysis. While clustering and cell annotation
techniques provide information about the cell types present in the
experiment, they supply no information on the relationships between
cell types and clusters. Recently, several methods have been proposed
to reconstruct differentiation trajectory maps by ordering cells based
on expression pattern similarity (Saelens et al., 2019) or
transcriptional dynamics (La Manno et al., 2018; Bergen et al.,
2020). These techniques have been successfully applied to study
the developmental trajectories of different cell types and TMEs
(Zhang et al., 2019; Chen et al., 2020; Qian et al., 2020; He et al.,
2021; Liu et al., 2021). With the improvement in single-cell omics
technology performance and their integration ability, we need to
address the problem of cell number scalability and the generalizability
of these methods to different omics (Stassen et al., 2021).

Pro- and anti-tumor mechanisms are governed by changes
driven by complex molecular and cellular interactions within the
TME (Anderson and Simon, 2020). Various methods have been
introduced in single-cell data analyses to study the intra- and
inter-cellular interactome through the inference of gene
regulatory networks (GRNs) and ligand-receptor pairs to
understand the biological processes underlying these
mechanisms. Several methods for GRN inference have been
proposed to decipher intracellular networks, including tools
originally designed for bulk transcriptomics (Huynh-Thu and
Sanguinetti, 2015; Moerman et al., 2019) and techniques
specically designed for single-cell transcriptomics that exploit
additional information, such as pseudo-temporal ordering
(Matsumoto et al., 2017; Specht and Li, 2017; Deshpande
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et al., 2021) and information about transcription factors and their
targets (Aibar et al., 2017). The rst class of methods tries to learn
the gene regulatory structure without prior information, and the
second class uses pseudo-temporal information to better explain
gene regulation during cell differentiation and development. A
systematic evaluation of these techniques was recently published
(Pratapa et al., 2020). In addition to the intracellular regulation
state of a cell, a crucial aspect in understanding the TME involves
exploring the cell-to-cell interactome induced by cancer cells
(Whiteside, 2008). In spatial technologies, this task can be
accomplished by observing cellular co-localization by
inspecting appropriate cell markers in histological regions of
interest (ROIs) of tissue sections. Without spatial information,
cellular interactions must be inferred from the ligand and
respective cognate receptor expression levels.

Several computational methods based on different mathematical
models have been proposed to identify cell-to-cell interactions.
Among others, methods based on the permutation of expression
have been widely used (Armingol et al., 2021). These methods
typically calculate the communication score of a list of ligand-
receptor pairs obtained from curated databases and evaluate the
signicance of the interactions through cluster label permutation
and statistical tests. Ligand-receptor interactions inferred from
single-cell transcriptomics may provide interesting hypotheses
that need to be further validated using other technologies.

CONCLUSION AND FUTURE
PERSPECTIVES

The shift from bulk to single-cell sequencing has allowed us to move
forward from a general molecular signature in which the
contribution of each cell is averaged to the complete molecular
ngerprint of each sequenced cell. This is particularly important
when complex samples characterized by heterogeneous cell
compositions, such as tumor tissues, are analyzed. Accordingly,
the employment of single-cell technologies has radically improved
the understanding of the cancer framework both quantitatively and
qualitatively. Indeed, a single-cell platform can resolve the plasticity
of tumor cells and decode tumor phenotypes (invasiveness,
stemness, proliferation, and apoptosis), revealing the composition
of the TME and the differentiation of immune and stromal cells
towards anti- or pro-tumor phenotypes. In addition, single-cell
sequencing can track the evolutionary trajectories of neoplastic
clones in primary tumors, with results that challenge the original
vision of gradual neoplastic evolution (Gao et al., 2016) and improve
the understanding of the metastatic spreading process by proling
circulating tumor cells or metastatic lesions (Leung et al., 2017).
Similarly, molecular tumor ngerprinting can predict the response
to target therapy (Tirosh et al., 2016; Rambow et al., 2018). Although
single-cell technologies were initially developed for research
purposes and contributed signicantly to dissecting cancer
evolution mechanisms, clinical settings will soon use them.
Investigation at the single-cell level can improve early tumor
detection, prognostic biomarker identication, and patient risk
stratication, thus supporting a more tumor-tailored therapy.
Similarly, dissecting the complexity of the TME can help design

the best immunotherapy approach, reverting local immune
suppression or empowering the tness and killing abilities of
tumor-inltrating effector cells. Finally, single-cell sequencing
platforms can be employed as potent diagnostic tools for non-
invasive monitoring of tumor evolution and patient relapse by
proling circulating tumor cells. This approach can detect, for
instance, the appearance of clones resistant to targeted therapy,
promptly driving the clinical decision towards an alternative
therapeutic solution. However, some limitations need to be
overcome to make this technology available for mainstream
clinical purposes. First, its usage requires a more complex team,
including surgeons, oncologists, pathologists, and researchers
working in a fast and coordinated manner and the development
of robust tissue processing protocols for primary tumors. Moreover,
sample processing requires loss of tissue architecture, whereas spatial
single-cell technologies combining molecular and histological
information do not guarantee the same resolution of single-cell
sequencing on suspension cells. Secondly, scRNA-seq data depend
on their intrinsic noisy since eukaryotic transcription does not occur
at a persistent basal rate but it takes place in pulses (Chubb et al.,
2006). Therefore, a failure to uncover a transcript of a specic gene in
a cell at a single time point is an ambiguous result since it can be
considered as a result of either permanent gene inactivation or timely
limitation of gene transcription detection where the gene is active but
the transcript in the time window of the sampling is not present. To
avoid possible serious faults, the interpretation of scRNA-seq results
should directed on pathways analysis and gene-set enrichment
rather than single gene expression. Finally, batch effects can take
places when aggregating multiple samples. Several methods of
correcting batch effects have been optimized but their use must
be balanced against the risk of eclipsing true biological differences.
Nonetheless, as recently exemplied by the introduction of bulk
NGS, single-cell technology use will soon be extended to patients to
support cancer diagnosis and treatment in the near future.
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