6,511 research outputs found

    A survey of oscillating flow in Stirling engine heat exchangers

    Get PDF
    Similarity parameters for characterizing the effect of flow oscillation on wall shear stress, viscous dissipation, pressure drop and heat transfer rates are proposed. They are based on physical agruments and are derived by normalizing the governing equations. The literature on oscillating duct flows, regenerator and porous media flows is surveyed. The operating characteristics of the heat exchanger of eleven Stirling engines are discribed in terms of the similarity parameters. Previous experimental and analytical results are discussed in terms of these parameters and used to estimate the nature of the oscillating flow under engine operating conditions. The operating points for many of the modern Stirling engines are in or near the laminar to turbulent transition region. In several engines, working fluid does not pass entirely through heat exchangers during a cycle. Questions that need to be addressed by further research are identified

    Protoplanetary disks including radiative feedback from accreting planets

    Full text link
    While recent observational progress is converging on the detection of compact regions of thermal emission due to embedded protoplanets, further theoretical predictions are needed to understand the response of a protoplanetary disk to the planet formation radiative feedback. This is particularly important to make predictions for the observability of circumplanetary regions. In this work we use 2D hydrodynamical simulations to examine the evolution of a viscous protoplanetary disk in which a luminous Jupiter-mass planet is embedded. We use an energy equation which includes the radiative heating of the planet as an additional mechanism for planet formation feedback. Several models are computed for planet luminosities ranging from 10510^{-5} to 10310^{-3} Solar luminosities. We find that the planet radiative feedback enhances the disk's accretion rate at the planet's orbital radius, producing a hotter and more luminous environement around the planet, independently of the prescription used to model the disk's turbulent viscosity. We also estimate the thermal signature of the planet feedback for our range of planet luminosities, finding that the emitted spectrum of a purely active disk, without passive heating, is appreciably modified in the infrared. We simulate the protoplanetary disk around HD 100546 where a planet companion is located at about 68 au from the star. Assuming the planet mass is 5 Jupiter masses and its luminosity is 2.5×104L\sim 2.5 \times 10^{-4} \, L_\odot, we find that the radiative feedback of the planet increases the luminosity of its 5\sim 5 au circumplanetary disk from 105L10^{-5} \, \rm L_\odot (without feedback) to 103L10^{-3} \, \rm L_\odot, corresponding to an emission of 1mJy\sim 1 \, \rm mJy in LL^\prime band after radiative transfer calculations, a value that is in good agreement with HD 100546b observations.Comment: 12 pages, 12 figures. Accepted for publication in The Astrophysical Journa

    Spiral waves triggered by shadows in transition disks

    Full text link
    Circumstellar asymmetries such as central warps have recently been shown to cast shadows on outer disks. We investigate the hydrodynamical consequences of such variable illumination on the outer regions of a transition disk, and the development of spiral arms. Using 2D simulations, we follow the evolution of a gaseous disk passively heated by the central star, under the periodic forcing of shadows with an opening angle of \sim28^\circ. With a lower pressure under the shadows, each crossing results in a variable azimuthal acceleration, which in time develops into spiral density waves. Their pitch angles evolve from Π1522\Pi \sim 15^\circ-22^\circ at the onset, to \sim11^\circ-14^\circ, over \sim65~AU to 150~AU. Self-gravity enhances the density contrast of the spiral waves, as also reported previously for spirals launched by planets. Our control simulations with unshadowed irradiation do not develop structures, except for a different form of spiral waves seen at later times only in the gravitationally unstable control case. Scattered light predictions in the HH-band show that such illumination spirals should be observable. We suggest that spiral arms in the case-study transition disk HD~142527 could be explained as a result of shadowing from the tilted inner disk.Comment: 6 pages, 4 figures, 1 table. Accepted for publication in ApJ

    G protein beta gamma subunits synthesized in Sf9 cells. Functional characterization and the significance of prenylation of gamma

    Get PDF
    Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) consist of a nucleotide-binding alpha subunit and a high- affinity complex of beta and gamma subunits. There is molecular heterogeneity of beta and gamma, but the significance of this diversity is poorly understood. Different G protein beta and gamma subunits have been expressed both singly and in combinations in Sf9 cells. Although expression of individual subunits is achieved in all cases, beta gamma subunit activity (support of pertussis toxin-catalyzed ADP-ribosylation of rGi alpha 1) is detected only when beta and gamma are expressed concurrently. Of the six combinations of beta gamma tested (beta 1 or beta 2 with gamma 1, gamma 2, or gamma 3), only one, beta 2 gamma 1, failed to generate a functional complex. Each of the other five complexes has been purified by subunit exchange chromatography using Go alpha-agarose as the chromatographic matrix. We have detected differences in the abilities of the purified proteins to support ADP- ribosylation of Gi alpha 1; these differences are attributable to the gamma component of the complex. When assayed for their ability to inhibit calmodulin-stimulated type-I adenylylcyclase activity or to potentiate Gs alpha-stimulated type-II adenylylcyclase, recombinant beta 1 gamma 1 and transducin beta gamma are approximately 10 and 20 times less potent, respectively, than the other complexes examined. Prenylation and/or further carboxyl-terminal processing of gamma are not required for assembly of the beta gamma subunit complex but are indispensable for high affinity interactions of beta gamma with either G protein alpha subunits or adenylylcyclases

    Relational physics with real rods and clocks and the measurement problem of quantum mechanics

    Get PDF
    The use of real clocks and measuring rods in quantum mechanics implies a natural loss of unitarity in the description of the theory. We briefly review this point and then discuss the implications it has for the measurement problem in quantum mechanics. The intrinsic loss of coherence allows to circumvent some of the usual objections to the measurement process as due to environmental decoherence.Comment: 19 pages, RevTex, no figure

    On the Credibility of the Irish Pound in the EMS

    Get PDF
    This paper assesses the degree of credibility of the Irish Pound in the European Monetary System between 1983 and 1997. Different credibility indicators proposed in the literature are used to measure agents’ perceptions of the credibility of the ERM commitment in an attempt to distinguish between events stemming from problems in the ERM itself and those that appear to have been exclusive to Ireland.
    corecore