185 research outputs found

    The Chickpea, Summer Cropping, and a New Model for Pulse Domestication in the Ancient Near East

    Get PDF
    The widely accepted models describing the emergence of domesticated grain crops from their wild type ancestors are mostly based upon selection (conscious or unconscious) of major features related either to seed dispersal (nonbrittle ear, indehiscent pod) or free germination (nondormant seeds, soft seed coat). Based on the breeding systems (self-pollination) and dominance relations between the allelomorphs of seed dispersal mode and seed dormancy, it was postulated that establishment of the domesticated forms and replacement of the wild ancestral populations occurred in the Near East within a relatively short time. Chickpea (Cicer arietinum L.), however, appears as an exception among all other “founder crops” of Old World agriculture because of its ancient conversion into a summer crop. The chickpea is also exceptional because its major domestication trait appears to be vernalization insensitivity rather than pod indehiscence or free germination. Moreover, the genetic basis of vernalization response in wild chickpea (Cicer reticulatum Ladiz.) is polygenic, suggesting that a long domestication process was imperative due to the elusive phenotype of vernalization nonresponsiveness. There is also a gap in chickpea remains in the archaeological record between the Late Prepottery Neolithic and the Early Bronze Age. Contrary to the common view that Levantine summer cropping was introduced relatively late (Early Bronze Age), we argue for an earlier (Neolithic) Levantine origin of summer cropping because chickpea, when grown as a common winter crop, was vulnerable to the devastating pathogen Didymella rabiei, the causal agent of Ascochyta blight. The ancient (Neolithic) conversion of chickpea into a summer crop required seasonal differentiation of agronomic operation from the early phases of the Neolithic revolution. This topic is difficult to deal with, as direct data on seasonality in prehistoric Old World field crop husbandry are practically nonexistent. Consequently, this issue was hardly dealt with in the literature. Information on the seasonality of ancient (Neolithic, Chalcolithic, and Early Bronze Age, calibrated 11,500 to 4,500 years before present) Near Eastern agriculture may improve our understanding of the proficiency of early farmers. This in turn may provide a better insight into Neolithic agrotechniques and scheduling. It is difficult to fully understand chickpea domestication without a Neolithic seasonal differentiation of agronomic practice because the rapid establishment of the successful Near Eastern crop package which included wheats, barley, pea, lentil, vetches, and flax, would have preempted the later domestication of this rare wild legume

    TOWARDS GLOBAL E-AGRICULTURE: THE CHALLENGE OF WEB-BASED DECISION SUPPORT SYSTEMS FOR GROWERS

    Get PDF
    Globalization is influencing several agriculture aspects: market globalization has increased export from producing to consuming countries where different food safety or pesticide residue regulations apply, and has raised awareness of global problems linked to agriculture production (i.e., chemical pesticide pollution). Pests, diseases and weeds may cause significant damages to growers and the cost of pesticide increases. Environmental pollution and risk of unwanted residues on food forced researchers to find ways to optimize pesticide applications. However, extension services and research in pest management is often fragmented and efforts to develop support tools for pest management are often duplicated. Furthermore, sometimes the knowledge does not spread from research centers to growers due to difficulties in knowledge transfer. Decision support systems (DSS) are widely used for assisting with integrated pest management (IPM), crop nutrition, and other aspects of information transfer. Developing highly portable and especially web-based DSSs that can be easily adapted to new environments is therefore desirable in view of agriculture globalization. Web-based models and DSSs have the major advantage of reducing software development, maintenance, and distribution costs, while making the relevant knowledge easily accessible to growers world-wide. This paper presents two examples of web-based agricultural DSSs and demonstrates the potential use of these systems in a wide application range in order to adapt to the needs of globalization. Allowing the choice of different values for the parameters renders these DSSs very flexible. Their development process integrated agricultural expertise from two distinct research centers with information systems know-how from a third center, over two countries, demonstrating the need for a global software development that crosses country borders. The results show that it is possible to satisfy the prerequisites: reducing software development cost by enlarging the number of users and reaching growers among whom specific knowledge on diseases is not yet established

    Towards the first linkage map of the Didymella rabiei genome.

    Get PDF
    A genetic map was developed for the ascomycete Didymella rabiei (Kovachevski) v. Arx (anamorph: Ascochyta rabiei Pass. Labr.), the causal agent of Ascochyta blight in chickpea (Cicer arietinum L.). The map was generated with 77 F1 progeny derived from crossing an isolate from the U.S.A. and an isolate from Syria. A total of 232 DAF (DNA AmplificationFingerprinting) primers and 37 STMS (Sequence-Tagged Microsatellite Site) primer pairs were tested for polymorphism between the parental isolates; 50 markers were mapped, 36 DAFs and 14 STMSs. These markers cover 261.4cM in ten linkage groups. Nineteen markers remained unlinked. Significant deviation from the expected 1:1 segregation ratios was observed for only two markers (Prob. of x2 <0.05). The implications of our results on ploidy level of the asexual spores are discussed

    Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Rhizopus oryzae </it>is a zygomycete filamentous fungus, well-known as a saprobe ubiquitous in soil and as a pathogenic/spoilage fungus, causing Rhizopus rot and mucomycoses.</p> <p>Results</p> <p>Carbohydrate Active enzyme (CAZy) annotation of the <it>R. oryzae </it>identified, in contrast to other filamentous fungi, a low number of glycoside hydrolases (GHs) and a high number of glycosyl transferases (GTs) and carbohydrate esterases (CEs). A detailed analysis of CAZy families, supported by growth data, demonstrates highly specialized plant and fungal cell wall degrading abilities distinct from ascomycetes and basidiomycetes. The specific genomic and growth features for degradation of easily digestible plant cell wall mono- and polysaccharides (starch, galactomannan, unbranched pectin, hexose sugars), chitin, chitosan, β-1,3-glucan and fungal cell wall fractions suggest specific adaptations of <it>R. oryzae </it>to its environment.</p> <p>Conclusions</p> <p>CAZy analyses of the genome of the zygomycete fungus <it>R. oryzae </it>and comparison to ascomycetes and basidiomycete species revealed how evolution has shaped its genetic content with respect to carbohydrate degradation, after divergence from the Ascomycota and Basidiomycota.</p

    Manejo da podridão-de-Sclerotium em pimentão em um argisolo no Amazonas

    Get PDF
    A podridão-de-Sclerotium é uma doença comum em plantas da família Solanaceae na Amazônia. Visando avaliar estratégias de manejo para esta doença em pimentão (Capsicum annuum, L. Solanaceae), foi conduzido experimento em campo em blocos casualizados com parcelas subdivididas e seis repetições, em Argissolo Vermelho-Amarelo artificialmente infestado com Sclerotium rolfsii. O tratamento principal foi a cobertura do solo (cobertura do solo com serragem ou solo nu). Os tratamentos secundários consistiram na adição ao solo de: 1) composto vegetal (3 L por cova), 2) arroz colonizado com Trichoderma harzianum (90 g por cova contendo &#8776; 1,4 x 10(9) conídios g-1), 3) composto vegetal e T. harzianum nas mesmas proporções descritas anteriormente e 4) testemunha. Todas as plantas receberam apenas adubação orgânica com composto vegetal na proporção de 1,5 L por cova, exceto as dos tratamentos com 3 L de composto por cova. A parcela principal foi constituída de três fileiras com dez plantas de pimentão (0,50 x 1,0 m) e cada subparcela continha três fileiras com cinco plantas. A incidência da podridão-de-Sclerotium foi avaliada duas vezes por semana. A cobertura morta favoreceu significativamente a ocorrência da doença. Nas parcelas com esse tratamento o aumento da intensidade da doença, expressa em área abaixo da curva de progresso da doença (AACPD), foi 35,5% maior, em comparação com as parcelas sem cobertura morta. A aplicação de T. harzianum ou o incremento na quantidade de composto (de 1,5 para 3 L por cova) reduziu a AACPD em 38,1% e 37,5%, respectivamente. A aplicação de T. harzianum ou o incremento na quantidade de composto, mesmo nos tratamentos com cobertura morta, reduziu significativamente a AACPD em 52,8% e em 55,1%, respectivamente, em comparação com o tratamento apenas com cobertura morta. Esses resultados sugerem que a utilização de T. harzianum e o aumento na quantidade de composto por cova são estratégias eficientes de manejo da podridão-de-Sclerotium em pimentão. A cobertura morta com serragem não deve ser utilizada em áreas infestadas com S. rolfsii

    Development and validation of a weather-based model for predicting infection of loquat fruit by Fusicladium eriobotryae

    Full text link
    A mechanistic, dynamic model was developed to predict infection of loquat fruit by conidia of Fusicladium eriobotryae, the causal agent of loquat scab. The model simulates scab infection periods and their severity through the sub-processes of spore dispersal, infection, and latency (i.e., the state variables); change from one state to the following one depends on environmental conditions and on processes described by mathematical equations. Equations were developed using published data on F. eriobotryae mycelium growth, conidial germination, infection, and conidial dispersion pattern. The model was then validated by comparing model output with three independent data sets. The model accurately predicts the occurrence and severity of infection periods as well as the progress of loquat scab incidence on fruit (with concordance correlation coefficients .0.95). Model output agreed with expert assessment of the disease severity in seven loquatgrowing seasons. Use of the model for scheduling fungicide applications in loquat orchards may help optimise scab management and reduce fungicide applications.This work was funded by Cooperativa Agricola de Callosa d'En Sarria (Alicante, Spain). Three months' stay of E. Gonzalez-Dominguez at the Universita Cattolica del Sacro Cuore (Piacenza, Italy) was supported by the Programa de Apoyo a la Investigacion y Desarrollo (PAID-00-12) de la Universidad Politecnica de Valencia. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.González Domínguez, E.; Armengol Fortí, J.; Rossi, V. (2014). Development and validation of a weather-based model for predicting infection of loquat fruit by Fusicladium eriobotryae. PLoS ONE. 9(9):1-12. https://doi.org/10.1371/journal.pone.0107547S11299Sánchez-Torres, P., Hinarejos, R., & Tuset, J. J. (2009). Characterization and Pathogenicity ofFusicladium eriobotryae, the Fungal Pathogen Responsible for Loquat Scab. Plant Disease, 93(11), 1151-1157. doi:10.1094/pdis-93-11-1151Gladieux, P., Caffier, V., Devaux, M., & Le Cam, B. (2010). Host-specific differentiation among populations of Venturia inaequalis causing scab on apple, pyracantha and loquat. Fungal Genetics and Biology, 47(6), 511-521. doi:10.1016/j.fgb.2009.12.007González-Domínguez, E., Rossi, V., Armengol, J., & García-Jiménez, J. (2013). Effect of Environmental Factors on Mycelial Growth and Conidial Germination ofFusicladium eriobotryae, and the Infection of Loquat Leaves. Plant Disease, 97(10), 1331-1338. doi:10.1094/pdis-02-13-0131-reGonzález-Domínguez, E., Rossi, V., Michereff, S. J., García-Jiménez, J., & Armengol, J. (2014). Dispersal of conidia of Fusicladium eriobotryae and spatial patterns of scab in loquat orchards in Spain. European Journal of Plant Pathology, 139(4), 849-861. doi:10.1007/s10658-014-0439-0Becker, C. M. (1994). Discontinuous Wetting and Survival of Conidia ofVenturia inaequalison Apple Leaves. Phytopathology, 84(4), 372. doi:10.1094/phyto-84-372Hartman, J. R., Parisi, L., & Bautrais, P. (1999). Effect of Leaf Wetness Duration, Temperature, and Conidial Inoculum Dose on Apple Scab Infections. Plant Disease, 83(6), 531-534. doi:10.1094/pdis.1999.83.6.531Holb, I. J., Heijne, B., Withagen, J. C. M., & Jeger, M. J. (2004). Dispersal of Venturia inaequalis Ascospores and Disease Gradients from a Defined Inoculum Source. Journal of Phytopathology, 152(11-12), 639-646. doi:10.1111/j.1439-0434.2004.00910.xRossi, V., Giosue, S., & Bugiani, R. (2003). Influence of Air Temperature on the Release of Ascospores of Venturia inaequalis. Journal of Phytopathology, 151(1), 50-58. doi:10.1046/j.1439-0434.2003.00680.xStensvand, A., Gadoury, D. M., Amundsen, T., Semb, L., & Seem, R. C. (1997). Ascospore Release and Infection of Apple Leaves by Conidia and Ascospores ofVenturia inaequalisat Low Temperatures. Phytopathology, 87(10), 1046-1053. doi:10.1094/phyto.1997.87.10.1046Machardy WE (1996) Apple scab. Biology, epidemiology and management. St. Paul: APS Press. 545.James, J. R. (1982). Environmental Factors Influencing Pseudothecial Development and Ascospore Maturation ofVenturia inaequalis. Phytopathology, 72(8), 1073. doi:10.1094/phyto-72-1073Li, B., Zhao, H., Li, B., & Xu, X.-M. (2003). Effects of temperature, relative humidity and duration of wetness period on germination and infection by conidia of the pear scab pathogen (Venturia nashicola). Plant Pathology, 52(5), 546-552. doi:10.1046/j.1365-3059.2003.00887.xLi, B.-H., Xu, X.-M., Li, J.-T., & Li, B.-D. (2005). Effects of temperature and continuous and interrupted wetness on the infection of pear leaves by conidia of Venturia nashicola. Plant Pathology, 54(3), 357-363. doi:10.1111/j.1365-3059.2005.01207.xUMEMOTO, S. (1990). Dispersion of ascospores and conidia of causal fungus of Japanese pear scab, Venturia nashicola. Japanese Journal of Phytopathology, 56(4), 468-473. doi:10.3186/jjphytopath.56.468Rossi, V., Salinari, F., Pattori, E., Giosuè,, S., & Bugiani, R. (2009). Predicting the Dynamics of Ascospore Maturation ofVenturia pirinaBased on Environmental Factors. Phytopathology, 99(4), 453-461. doi:10.1094/phyto-99-4-0453Spotts, R. A. (1991). Effect of Temperature and Wetness on Infection of Pear byVenturia pirinaand the Relationship Between Preharvest Inoculation and Storage Scab. Plant Disease, 75(12), 1204. doi:10.1094/pd-75-1204Spotts, R. A. (1994). Factors Affecting Maturation and Release of Ascospores ofVenturia pirinain Oregon. Phytopathology, 84(3), 260. doi:10.1094/phyto-84-260Villalta, O., Washington, W. S., Rimmington, G. M., & Taylor, P. A. (2000). Australasian Plant Pathology, 29(4), 255. doi:10.1071/ap00048Villalta, O. N., Washington, W. S., Rimmington, G. M., & Taylor, P. A. (2000). Effects of temperature and leaf wetness duration on infection of pear leaves by Venturia pirina. Australian Journal of Agricultural Research, 51(1), 97. doi:10.1071/ar99068Lan, Z., & Scherm, H. (2003). Moisture Sources in Relation to Conidial Dissemination and Infection byCladosporium carpophilumWithin Peach Canopies. Phytopathology, 93(12), 1581-1586. doi:10.1094/phyto.2003.93.12.1581Lawrence, Jr., E. G. (1982). Environmental Effects on the Development and Dissemination ofCladosporium carpophilumon Peach. Phytopathology, 72(7), 773. doi:10.1094/phyto-72-773Gottwald, T. R. (1985). Influence of Temperature, Leaf Wetness Period, Leaf Age, and Spore Concentration on Infection of Pecan Leaves by Conidia ofCladosporium caryigenum. Phytopathology, 75(2), 190. doi:10.1094/phyto-75-190Latham, A. J. (1982). Effects of Some Weather Factors andFusicladium effusumConidium Dispersal on Pecan Scab Occurrence. Phytopathology, 72(10), 1339. doi:10.1094/phyto-72-1339MARZO, L., FRISULLO, S., LOPS, F., & ROSSI, V. (1993). Possible dissemination of Spilocaea oleagina conidia by insects (Ectopsocus briggsi). EPPO Bulletin, 23(3), 389-391. doi:10.1111/j.1365-2338.1993.tb01341.xLOPS, F., FRISULLO, S., & ROSSI, V. (1993). Studies on the spread of the olive scab pathogen, Spilocaea oleagina. EPPO Bulletin, 23(3), 385-387. doi:10.1111/j.1365-2338.1993.tb01340.xObanor, F. O., Walter, M., Jones, E. E., & Jaspers, M. V. (2007). Effect of temperature, relative humidity, leaf wetness and leaf age on Spilocaea oleagina conidium germination on olive leaves. European Journal of Plant Pathology, 120(3), 211-222. doi:10.1007/s10658-007-9209-6Obanor, F. O., Walter, M., Jones, E. E., & Jaspers, M. V. (2010). Effects of temperature, inoculum concentration, leaf age, and continuous and interrupted wetness on infection of olive plants by Spilocaea oleagina. Plant Pathology, 60(2), 190-199. doi:10.1111/j.1365-3059.2010.02370.xViruega, J. R., Moral, J., Roca, L. F., Navarro, N., & Trapero, A. (2013). Spilocaea oleaginain Olive Groves of Southern Spain: Survival, Inoculum Production, and Dispersal. Plant Disease, 97(12), 1549-1556. doi:10.1094/pdis-12-12-1206-reViruega, J. R., Roca, L. F., Moral, J., & Trapero, A. (2011). Factors Affecting Infection and Disease Development on Olive Leaves Inoculated withFusicladium oleagineum. Plant Disease, 95(9), 1139-1146. doi:10.1094/pdis-02-11-0126Eikemo, H., Gadoury, D. M., Spotts, R. A., Villalta, O., Creemers, P., Seem, R. C., & Stensvand, A. (2011). Evaluation of Six Models to Estimate Ascospore Maturation in Venturia pyrina. Plant Disease, 95(3), 279-284. doi:10.1094/pdis-02-10-0125Li, B.-H., Yang, J.-R., Dong, X.-L., Li, B.-D., & Xu, X.-M. (2007). A dynamic model forecasting infection of pear leaves by conidia of Venturia nashicola and its evaluation in unsprayed orchards. European Journal of Plant Pathology, 118(3), 227-238. doi:10.1007/s10658-007-9138-4Rossi, V., Giosuè, S., & Bugiani, R. (2007). A-scab (Apple-scab), a simulation model for estimating risk of Venturia inaequalis primary infections. EPPO Bulletin, 37(2), 300-308. doi:10.1111/j.1365-2338.2007.01125.xXU, X.-M., BUTT, D. J., & SANTEN, G. (1995). A dynamic model simulating infection of apple leaves by Venturia inaequalis. Plant Pathology, 44(5), 865-876. doi:10.1111/j.1365-3059.1995.tb02746.xRoubal, C., Regis, S., & Nicot, P. C. (2012). Field models for the prediction of leaf infection and latent period ofFusicladium oleagineumon olive based on rain, temperature and relative humidity. Plant Pathology, 62(3), 657-666. doi:10.1111/j.1365-3059.2012.02666.xPayne, A. F., & Smith, D. L. (2012). Development and Evaluation of Two Pecan Scab Prediction Models. Plant Disease, 96(9), 1358-1364. doi:10.1094/pdis-03-11-0202-reTrapman M, Jansonius PJ (2008) Disease management in organic apple orchards is more than applying the right product at the correct time. Ecofruit-13th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing: Proceedings to the Conference from 18th February to 20th February 2008 at Weinsberg/Germany. 16–22.HOLB, I. J., JONG, P. F., & HEIJNE, B. (2003). Efficacy and phytotoxicity of lime sulphur in organic apple production. Annals of Applied Biology, 142(2), 225-233. doi:10.1111/j.1744-7348.2003.tb00245.xGent, D. H., Mahaffee, W. F., McRoberts, N., & Pfender, W. F. (2013). The Use and Role of Predictive Systems in Disease Management. Annual Review of Phytopathology, 51(1), 267-289. doi:10.1146/annurev-phyto-082712-102356Alavanja, M. C. R., Hoppin, J. A., & Kamel, F. (2004). Health Effects of Chronic Pesticide Exposure: Cancer and Neurotoxicity. Annual Review of Public Health, 25(1), 155-197. doi:10.1146/annurev.publhealth.25.101802.123020Brent KJ, Hollomon DW (2007) Fungicide resistance in crop pathogens: How can it be managed? FRAC Monog 2. Fungicide Resistance Action Committee.Shtienberg, D. (2013). Will Decision-Support Systems Be Widely Used for the Management of Plant Diseases? Annual Review of Phytopathology, 51(1), 1-16. doi:10.1146/annurev-phyto-082712-102244Leffelaar P (1993) On Systems Analysis and Simulation of Ecological Processes. Kluwer. London.Rossi V, Giosuè S, Caffi T (2010) Modelling plant diseases for decision making in crop protection. In: Oerke E-C, Gerhards R, Menz G, Sikora RA, editors. Precision Crop Protection-the Challenge and Use of Heterogeneity.Hui, C. (2006). Carrying capacity, population equilibrium, and environment’s maximal load. Ecological Modelling, 192(1-2), 317-320. doi:10.1016/j.ecolmodel.2005.07.001Townsend C, Begon M, Harper J (2008) Essentials of ecology. John Wiley and Sons. New York. 510.Zadoks J, Schein R (1979) Epidemiology and plant disease management. Oxford University Press, New York. 427.Bennett, J. C., Diggle, A., Evans, F., & Renton, M. (2013). Assessing eradication strategies for rain-splashed and wind-dispersed crop diseases. Pest Management Science, 69(8), 955-963. doi:10.1002/ps.3459Ghanbarnia, K., Dilantha Fernando, W. G., & Crow, G. (2009). Developing Rainfall- and Temperature-Based Models to Describe Infection of Canola Under Field Conditions Caused by Pycnidiospores of Leptosphaeria maculans. Phytopathology, 99(7), 879-886. doi:10.1094/phyto-99-7-0879Gilligan, C. A., & van den Bosch, F. (2008). Epidemiological Models for Invasion and Persistence of Pathogens. Annual Review of Phytopathology, 46(1), 385-418. doi:10.1146/annurev.phyto.45.062806.094357Buck, A. L. (1981). New Equations for Computing Vapor Pressure and Enhancement Factor. Journal of Applied Meteorology, 20(12), 1527-1532. doi:10.1175/1520-0450(1981)0202.0.co;2Madden L V, Hughes G, van den Bosch F (2007) The study of plant disease epidemics. APS press. St. Paul. 421.González-Domínguez E, Rodríguez-Reina J, García-Jiménez J, Armengol J (2014) Evaluation of fungicides to control loquat scab caused by Fusicladium eriobotryae. Plant Heal Prog Accepted.De Wolf, E. D., & Isard, S. A. (2007). Disease Cycle Approach to Plant Disease Prediction. Annual Review of Phytopathology, 45(1), 203-220. doi:10.1146/annurev.phyto.44.070505.143329Krause, R. A., & Massie, L. B. (1975). Predictive Systems: Modern Approaches to Disease Control. Annual Review of Phytopathology, 13(1), 31-47. doi:10.1146/annurev.py.13.090175.000335Fourie, P., Schutte, T., Serfontein, S., & Swart, F. (2013). Modeling the Effect of Temperature and Wetness on Guignardia Pseudothecium Maturation and Ascospore Release in Citrus Orchards. Phytopathology, 103(3), 281-292. doi:10.1094/phyto-07-11-0194Gadoury, D. M. (1982). A Model to Estimate the Maturity of Ascospores ofVenturia inaequalis. Phytopathology, 72(7), 901. doi:10.1094/phyto-72-901Holtslag, Q. A., Remphrey, W. R., Fernando, W. G. D., St-Pierre, R. G., & Ash, G. H. B. (2004). The development of a dynamic diseaseforecasting model to controlEntomosporium mespilionAmelanchier alnifolia. Canadian Journal of Plant Pathology, 26(3), 304-313. doi:10.1080/07060660409507148Legler SEE, Caffi T, Rossi V (2013) A Model for the development of Erysiphe necator chasmothecia in vineyards. Plant Pathol. DOI:10.1111/ppa.12145.Luo, Y., & Michailides, T. J. (2001). Risk Analysis for Latent Infection of Prune by Monilinia fructicola in California. Phytopathology, 91(12), 1197-1208. doi:10.1094/phyto.2001.91.12.1197Gadoury, D. M. (1986). Forecasting Ascospore Dose of Venturia inaequalis in Commercial Apple Orchards. Phytopathology, 76(1), 112. doi:10.1094/phyto-76-112Gent, D. H., De Wolf, E., & Pethybridge, S. J. (2011). Perceptions of Risk, Risk Aversion, and Barriers to Adoption of Decision Support Systems and Integrated Pest Management: An Introduction. Phytopathology, 101(6), 640-643. doi:10.1094/phyto-04-10-0124Schut, M., Rodenburg, J., Klerkx, L., van Ast, A., & Bastiaans, L. (2014). Systems approaches to innovation in crop protection. A systematic literature review. Crop Protection, 56, 98-108. doi:10.1016/j.cropro.2013.11.017Mills W, Laplante A (1954) Diseases and insect in the orchard. Cornell Ext Bull 711.GVA (2013) Octubre-Noviembre 2013. Butlletí d’avisos 13.MacHardy, W. E. (1989). A Revision of Mills’s Criteria for Predicting Apple Scab Infection Periods. Phytopathology, 79(3), 304. doi:10.1094/phyto-79-30
    corecore