1,290 research outputs found

    The Barnes-Evans color-surface brightness relation: A preliminary theoretical interpretation

    Get PDF
    Model atmosphere calculations are used to assess whether an empirically derived relation between V-R and surface brightness is independent of a variety of stellar paramters, including surface gravity. This relationship is used in a variety of applications, including the determination of the distances of Cepheid variables using a method based on the Beade-Wesselink method. It is concluded that the use of a main sequence relation between V-R color and surface brightness in determining radii of giant stars is subject to systematic errors that are smaller than 10% in the determination of a radius or distance for temperature cooler than 12,000 K. The error in white dwarf radii determined from a main sequence color surface brightness relation is roughly 10%

    A shock wave study of Coconino sandstone

    Get PDF
    Hugoniot equation of state measurements from shock wave loading study of Coconino sandston

    EX-111 Thermal Emission from Hot White Dwarfs: The Suggested He Abundance-Temperature Correlation. EX-112: The Unique Emission Line White Dwarf Star GD 356

    Get PDF
    Progress in the EXOSAT data analysis program is reported. EXOSAT observations for four white dwarfs (WD1031-115, WD0004+330, WD1615-154, and WD0109-264) were obtained. Counting rates were unexpectedly low, indicating that these objects have a substantial amount of x-ray absorbing matter in their photosheres. In addition, soft x-ray pulsations characterized by a 9.25 minute cycle were discovered in the DA white dwarf V471 Tauri. A residual x-ray flux from the K dwarf companion can be seen during the white dwarf eclipse at orbital phase 0.0. Pronounced dips in the soft x-ray light curve occur at orbital phases 0.15, 0.18, and 0.85. The dips may be correlated with the triangular Lagrangian points of the binary orbit. Smaller dips at phases near the eclipse may be associated with cool loops in the K star corona. Data for the white dwarf H1504+65 was also analyzed. This object is particularly unusual in that its photoshere is devoid of hydrogen and helium. Finally, existing data on the white dwarf Sirius B were analyzed to see what constraints from other data can be placed on the properties of this star. Interrelationships between radius, rotational velocity, and effective temperature were derived

    PREHISTORIC CREMATIONS FROM NOGALES, ARIZONA *

    Get PDF
    In October, 1969, the Highway Salvage Section of the Arizona State Museum conducted emergency salvage excavations in conjunction with the construction of the Tucson-Nogales Highway. Ten cremations were recovered from a backhoe trench which had been placed within the city limits of Nogales, Arizona. Analysis of the cremations indicated cultural contact between the Trincheras culture of Sonora, Mexico, and the Hohokam culture of the Santa Cruz River Valley in southern Arizona

    Material Properties Measurements for Selected Materials

    Get PDF
    Hugoniot equation of state measurements were made on Coconino sandstone, Vacaville basalt, Kaibab limestone, Mono Crater, pumice and Zelux (a polycarbonate resin) for pressures to 2 Mb. A single data point was obtained for fused quartz at 1.6 Mb. In addition to the hugoniot studies, the uniaxial compressive stress behavior of Vacaville basalt and Zelux was investigated at strain rates from about 10(exp -5)/sec to 10(exp 3)/second. The data presented include the stress - strain relations as a function of strain rate for these two materials

    Open Systems Viewed Through Their Conservative Extensions

    Full text link
    A typical linear open system is often defined as a component of a larger conservative one. For instance, a dielectric medium, defined by its frequency dependent electric permittivity and magnetic permeability is a part of a conservative system which includes the matter with all its atomic complexity. A finite slab of a lattice array of coupled oscillators modelling a solid is another example. Assuming that such an open system is all one wants to observe, we ask how big a part of the original conservative system (possibly very complex) is relevant to the observations, or, in other words, how big a part of it is coupled to the open system? We study here the structure of the system coupling and its coupled and decoupled components, showing, in particular, that it is only the system's unique minimal extension that is relevant to its dynamics, and this extension often is tiny part of the original conservative system. We also give a scenario explaining why certain degrees of freedom of a solid do not contribute to its specific heat.Comment: 51 page

    Calibrating AIS images using the surface as a reference

    Get PDF
    A method of evaluating the initial assumptions and uncertainties of the physical connection between Airborne Imaging Spectrometer (AIS) image data and laboratory/field spectrometer data was tested. The Tuscon AIS-2 image connects to lab reference spectra by an alignment to the image spectral endmembers through a system gain and offset for each band. Images were calibrated to reflectance so as to transform the image into a measure that is independent of the solar radiant flux. This transformation also makes the image spectra directly comparable to data from lab and field spectrometers. A method was tested for calibrating AIS images using the surface as a reference. The surface heterogeneity is defined by lab/field spectral measurements. It was found that the Tuscon AIS-2 image is consistent with each of the initial hypotheses: (1) that the AIS-2 instrument calibration is nearly linear; (2) the spectral variance is caused by sub-pixel mixtures of spectrally distinct materials and shade, and (3) that sub-pixel mixtures can be treated as linear mixtures of pure endmembers. It was also found that the image can be characterized by relatively few endmembers using the AIS-2 spectra

    Evidence For Temperature Change And Oblique Pulsation From Light Curve Fits Of The Pulsating White Dwarf GD 358

    Get PDF
    Convective driving, the mechanism originally proposed by Brickhill for pulsating white dwarf stars, has gained general acceptance as the generic linear instability mechanism in DAV and dbV white dwarfs. This physical mechanism naturally leads to a nonlinear formulation, reproducing the observed light curves of many pulsating white dwarfs. This numerical model can also provide information on the average depth of a star's convection zone and the inclination angle of its pulsation axis. In this paper, we give two sets of results of nonlinear light curve fits to data on the dbV GD 358. Our first fit is based on data gathered in 2006 by the Whole Earth Telescope; this data set was multiperiodic containing at least 12 individual modes. Our second fit utilizes data obtained in 1996, when GD 358 underwent a dramatic change in excited frequencies accompanied by a rapid increase in fractional amplitude; during this event it was essentially monoperiodic. We argue that GD 358's convection zone was much thinner in 1996 than in 2006, and we interpret this as a result of a short-lived increase in its surface temperature. In addition, we find strong evidence of oblique pulsation using two sets of evenly split triplets in the 2006 data. This marks the first time that oblique pulsation has been identified in a variable white dwarf star.Delaware Asteroseismic Research CenterNational Science Foundation AST-0909107, AST-0607840Norman Hackerman Advanced Research Program 003658-0255-2007Crystal Trust FoundationMt. Cuba ObservatoryUniversity of DelawareAstronom

    The dynamic behavior of bacterial macrofibers growing with one end prevented from rotating: variation in shaft rotation along the fiber's length, and supercoil movement on a solid surface toward the constrained end

    Get PDF
    BACKGROUND: Bacterial macrofibers twist as they grow, writhe, supercoil and wind up into plectonemic structures (helical forms the individual filaments of which cannot be taken apart without unwinding) that eventually carry loops at both of their ends. Terminal loops rotate about the axis of a fiber's shaft in contrary directions at increasing rate as the shaft elongates. Theory suggests that rotation rates should vary linearly along the length of a fiber ranging from maxima at the loop ends to zero at an intermediate point. Blocking rotation at one end of a fiber should lead to a single gradient: zero at the blocked end to maximum at the free end. We tested this conclusion by measuring directly the rotation at various distances along fiber length from the blocked end. The movement of supercoils over a solid surface was also measured in tethered macrofibers. RESULTS: Macrofibers that hung down from a floating wire inserted through a terminal loop grew vertically and produced small plectonemic structures by supercoiling along their length. Using these as markers for shaft rotation we observed a uniform gradient of initial rotation rates with slopes of 25.6°/min. mm. and 36.2°/min. mm. in two different fibers. Measurements of the distal tip rotation in a third fiber as a function of length showed increases proportional to increases in length with constant of proportionality 79.2 rad/mm. Another fiber tethered to the floor grew horizontally with a length-doubling time of 74 min, made contact periodically with the floor and supercoiled repeatedly. The supercoils moved over the floor toward the tether at approximately 0.06 mm/min, 4 times faster than the fiber growth rate. Over a period of 800 minutes the fiber grew to 23 mm in length and was entirely retracted back to the tether by a process involving 29 supercoils. CONCLUSIONS: The rate at which growing bacterial macrofibers rotated about the axis of the fiber shaft measured at various locations along fibers in structures prevented from rotating at one end reveal that the rate varied linearly from zero at the blocked end to maximum at the distal end. The increasing number of twisting cells in growing fibers caused the distal end to continuously rotate faster. When the free end was intermittently prevented from rotating a torque developed which was relieved by supercoiling. On a solid surface the supercoils moved toward the end permanently blocked from rotating as a result of supercoil rolling over the surface and the formation of new supercoils that reduced fiber length between the initial supercoil and the wire tether. All of the motions are ramifications of cell growth with twist and the highly ordered multicellular state of macrofibers
    • …
    corecore