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ABSTRACT

Convective driving, the mechanism originally proposed by Brickhill for pulsating white dwarf stars, has gained
general acceptance as the generic linear instability mechanism in DAV and DBV white dwarfs. This physical
mechanism naturally leads to a nonlinear formulation, reproducing the observed light curves of many pulsating
white dwarfs. This numerical model can also provide information on the average depth of a star’s convection zone
and the inclination angle of its pulsation axis. In this paper, we give two sets of results of nonlinear light curve fits
to data on the DBV GD 358. Our first fit is based on data gathered in 2006 by the Whole Earth Telescope; this
data set was multiperiodic containing at least 12 individual modes. Our second fit utilizes data obtained in 1996,
when GD 358 underwent a dramatic change in excited frequencies accompanied by a rapid increase in fractional
amplitude; during this event it was essentially monoperiodic. We argue that GD 358’s convection zone was much
thinner in 1996 than in 2006, and we interpret this as a result of a short-lived increase in its surface temperature. In
addition, we find strong evidence of oblique pulsation using two sets of evenly split triplets in the 2006 data. This
marks the first time that oblique pulsation has been identified in a variable white dwarf star.

Key words: convection – stars: individual (GD 358) – stars: magnetic field – stars: oscillations – stars: variables:
general
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1. ASTROPHYSICAL CONTEXT

White dwarf stars offer several advantages for astrophysical
study. First, they are the evolutionary endpoint of about 97%
of all stars and are therefore representative of a large fraction
of the stellar population. Second, the source of their pressure
support is electron degeneracy (Chandrasekhar 1939), so their
bulk mechanical structure is well understood. Third, nuclear
reactions, if any, contribute a negligible amount to their energy,
so their evolution is dominated by simple cooling (Mestel 1952).
Finally, they are observed to pulsate in specific temperature
ranges. The pulsators are believed to be typical in every other
way, so what we learn asteroseismologically about them should
apply to all white dwarf stars (for recent reviews, see Winget &
Kepler 2008; Fontaine & Brassard 2008).

In addition to learning about the stars themselves, the relative
simplicity of white dwarfs makes them ideal laboratories for
testing and constraining poorly understood physical processes.
One such process, convection, is an important energy transfer
process in most stars, yet it remains one of the largest sources
of uncertainty in stellar modeling. For instance, main-sequence
stars at least 20% more massive than the Sun have convective
cores, and the amount of convective overshoot and mixing is the
primary factor that determines their main-sequence lifetimes
(see, e.g., Di Mauro et al. 2003). In addition, red giants and
asymptotic giant branch stars have large convective envelopes,
and the details of convection play a role in the evolution of their
surface abundances and in their overall evolution (Bertelli et al.
2009).

We have developed a method which uses the pulsations of
white dwarf stars to measure fundamental parameters of their
convection zones. The physical idea is that the pulsations cause
local surface temperature (“Teff”) variations that lead to local
variations in the depth of the convection zone. As the convection
zone waxes and wanes it both absorbs and releases energy,
modulating the local energy flux (Brickhill 1991; Goldreich
& Wu 1999). Due to the extreme temperature sensitivity
of convection, finite amplitude pulsations can lead to highly
nonlinear light curves (Brickhill 1983, 1992; Wu 2001; Ising &
Koester 2001). In Montgomery (2005), we showed how a simple
numerical model could be used to obtain not only good light
curve fits but also information on the average depth of a star’s
convection zone and the inclination angle of its pulsation axis.

2. NONLINEAR LIGHT CURVE FITS

Montgomery (2005) demonstrated that by considering the
nonlinear response of the convection zone (Brickhill 1992; Wu
2001) one could obtain excellent fits to the light curves of
two (nearly) single-mode white dwarf pulsators. We have since
extended this technique to multiperiodic stars (Montgomery
2007) and have taken into account the nonlinear relation-
ship between the bolometric and observed flux variations
(Montgomery 2008). In this section, we describe these effects
and show how they have been added to our nonlinear light curve
fitting technique.

Our approach is well summarized in Montgomery (2005) and
Montgomery (2008). Briefly, we assume that the convective
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turnover time of fluid elements in the convection zone is short
(�1 s) compared to the periods of pulsation (�100 s), so that
the convection zone responds almost instantaneously to the
pulsations and is always in hydrostatic equilibrium. In addition,
we assume that the perturbation of the flux at the base of
the convection zone is sinusoidal. Next, we assume that the
luminosity changes are due only to temperature changes and
not to geometric effects; Robinson et al. (1982) found that the
fractional radius change ΔR/R ∼ 10−5–10−4 for the DAVs,
with temperature variations (and the associated changes in limb
darkening) accounting for well over 99% of the luminosity
variation, and this result was confirmed by Watson (1988) for
both the DAV and DBV stars. Finally, the surface convection
zones of pulsating white dwarfs are quite thin geometrically, of
order 10−5 of the radius of the star; this allows us to use the plane-
parallel approximation and neglect horizontal energy transport.
With these assumptions, we are able to derive a relationship
between the local flux at a given (θ , φ) entering the convection
zone at its base, Fbase, and that leaving it at the photosphere,
Fphot:

Fphot = Fbase + τC

dFphot

dt
, (1)

where the new timescale τC ≡ τC(Fphot) describes the changing
heat capacity of the convection zone as a function of the local
photospheric flux. We parameterize it as

τC = τ0

(
Teff

Teff,0

)−N

, (2)

where τ0 is the equilibrium value of τC , Teff is the instantaneous
effective temperature and Teff,0 is its equilibrium value, and
N is a parameter describing the sensitivity of τC to changes
in Teff . From standard mixing length theory of convection we
expect that N ∼ 90 for DAVs and N ∼ 23 for DBVs. It
is this extreme temperature sensitivity which is responsible
for the large nonlinearities seen in white dwarf pulsations.
For reference, this timescale is closely related to the standard
thermal timescale (τth) at the base of the convection zone: for
the DAVs τC ≈ 4 τth (Goldreich & Wu 1999) and for the DBVs
τC ≈ 0.6 τth. With the further assumption that the angular
dependence of Fbase is given by a spherical harmonic Y�m, we
can calculate the bolometric flux changes at the surface of the
model and average them appropriately over the visible disk of
the model.

2.1. Improvements in the Modeling

Since 2005 we have made important technical improvements
to the light curve fitting code. First, we extended the code
to include the more common multiperiodic case, where many
modes with different � and m values are simultaneously present.
Thus, the flux at the base of the convection zone is now given
by a sum over the modes:

δFbase

Fbase
= Re

⎧⎨
⎩

M∑
j=1

Aje
i(ωj t+φj )Y�j mj

(θ, φ)

⎫⎬
⎭ . (3)

In this formula, Aj, ωj , φj , �j , and mj are the amplitude, angular
frequency, phase, �, and m values of the jth mode, and the total
number of modes is M.

Second, we adapted the code to simultaneously fit an arbitrary
number of observations (“runs”). This is a necessary step
for applying this technique to multiple runs obtained from

Figure 1. Example of the limb darkening in DB model atmospheres with
log g = 8.0, for the indicated range of temperatures.

(A color version of this figure is available in the online journal.)

Whole Earth Telescope (WET) campaigns as well as successive
nights of single-site observations. Since the code allocates and
deallocates memory as needed it typically uses only 8 MB
of RAM, independent of the number of runs included in
the fit.

Third, we replaced our simple analytical prescription for limb
darkening with tabulated values based on a grid of our model
atmospheres (for a description of the models, see Koester 2010).
This grid ranges in Teff from 20,000 K to 30,000 K in steps of
500 K and in log g from 7.5 to 8.5 in steps of 0.25. From this
grid we instantaneously calculate the local flux as a function of
Teff and μ ≡ cos θ ; thus, variations in the limb darkening with
Teff are automatically included. In Figure 1, we show examples
of the limb darkening for a log g = 8.0 He atmosphere white
dwarf model as a function of μ for a range of Teff values.

Finally, we improved the way in which the local bolometric
flux variations are mapped into variations in a given wavelength
band. Previously we used a flux “correction factor,” αX, to
accomplish this. Denoting by FX the flux in the passband X,
then, for small fractional changes in the fluxes, αX was defined
by

δFX

FX

= αX

δFphot

Fphot
, (4)

where Fphot is the local bolometric flux at the photosphere and
δF is the variation in the respective fluxes due to the pulsations.
Clearly, αX depends on the wavelength coverage of the passband
as well as the wavelength distribution of the flux from the source.
In previous analyses, we estimated that α ∼ 0.42 for DBVs and
α ∼ 0.66 for DAVs. The value for the DAVs is not that different
from what one obtains from a proper calculation assuming a
passband centered on 5000 Å. For the DBVs, however, the more
detailed calculations yield a value of α ∼ 0.25–0.35 which is
significantly different from the earlier estimates.

Of course, α is not strictly a constant but rather is a function of
Teff and therefore Fphot. For larger amplitudes, departures from
linearity between the fluxes become more important, and to do
the problem properly we need FX as a function of Fphot, i.e.,
FX ≡ FX(Fphot).
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To calculate this flux conversion we use the same grid of DB
model atmospheres described earlier. In each model atmosphere,
the flux is tabulated as a function of wavelength λ and viewing
angle μ, so limb darkening is automatically included. Using a
given passband, we integrate it against the model atmosphere
flux to obtain FX as a function of Teff , μ, and log g. Since
log g is essentially constant during the pulsations, we only
have to interpolate once between sets of models for the given
value of log g; thus, we have FX ≡ FX(Teff, μ). Finally, since
Fphot ∝ T 4

eff , we can express this as FX ≡ FX(Fphot, μ).
In practice, we are only interested in relative flux changes,

so we calculate everything relative to a reference flux, which
we take to be the equilibrium flux of the star. If we denote by
a subscript “0” the equilibrium values of the fluxes, then the
function f we want is defined by

FX

FX,0
= f

(
Fphot

Fphot,0
, μ

)
. (5)

In the top panel of Figure 2, we show the fluxes FX/FX,0
and Fphot/Fphot,0 as a function of Teff , both normalized to one
at Teff = 25,000 K; the filter X is assumed to have an effective
wavelength of ∼5200 Å. The response of this filter was obtained
from convolving the wavelength response of the ALFOSC-
FASU CCD, the Nordic Telescope (NOT) primary and sec-
ondary mirror reflectivities, an S8612 filter, and atmospheric
absorption. In the lower panel, we show the function f defined
in Equation (5) as derived from these calculations. We see that
while this is not a perfectly linear relationship, the deviations
from linearity are not dramatic. Thus, while we use the fully
nonlinear relation in our calculations, we expect this effect to
make only a minor contribution to the overall nonlinearities
associated with the pulsations.

3. LIGHT CURVE FITS TO THE 2006 WET RUN

Our recent work with light curve fitting has been limited to
nearly single-mode pulsators: the DAVs G29-388 and GD 154,
and the DBV PG1351+489. This is because (1) monoperiodic
data can be folded at the pulsation period, producing a high
signal-to-noise ratio (S/N) “light curve” and (2) the number of
possible mode identifications (� and m values) for a single mode
is small enough that all possibilities can be directly explored.

GD 358 violates both of these conditions. First, due to the
nonlinear interaction of its large amplitude modes, the pulse
shape obtained by folding its light curve at a mode period
is not the same as the pulse shape which would be obtained
in the absence of other modes (Montgomery 2007). Second,
GD 358 has a large number of observed modes (see Table 2),
and it is impractical to search all possible combinations of �
and m values which each mode can take. For instance, if we
assume GD 358 to have of order ∼10 modes, all of which have
� = 1, then all possible permutations of m values yield a number
of (2� + 1)10 ∼ 60,000 different cases. Since each fit takes of
order an hour on a single processor computer, this is completely
impractical using a standard desktop computing approach.

Fortunately, GD 358 is well studied, so we have a good idea
what the � and m values for the main pulsation modes are
(e.g., Metcalfe et al. 2000; Winget et al. 1994). Even so, our
derived values of τ0 depend only weakly on the assumed mode

8 More precisely, while G29-38 is normally multiperiodic, the data set used
by Montgomery (2005) was taken at a time when its light curve was dominated
by a single large mode.

Figure 2. Top panel: the bolometric flux (Fphot) and the flux in the given passband
(FX) as a function of Teff for μ = 1. These calculations are for a log g = 8.0 DB
model, and both fluxes have been normalized to one at Teff = 25,000 K. Lower
panel: the passband flux as a function of the bolometric flux, again normalized
at Teff = 25,000 K. This is the function f given by Equation (5).

(A color version of this figure is available in the online journal.)

identifications, so it is not necessary for the mode identification
of each mode to be exact. Furthermore, the extended time
baseline and excellent coverage of the 2006 WET run allow us
to obtain very accurate frequencies for these modes (Provencal
et al. 2009). With this as a basis, our approach is to assume that
the frequencies and mode identifications are known and then to
make nonlinear light curve fits to a subset of runs in the WET
campaign which have high S/N. This implicitly assumes that
the pulsations are coherent throughout the time spanned by the
runs; in Section 6, we show that this is not strictly true for some
of the modes. High S/N data are desirable since we are mainly
interested in the nonlinear part of the light curve, which itself is
smaller than the linear part.

Many high quality runs were taken during the 2008 May
WET run, and we list in Table 1 those used in our fits. We
included the 12 largest amplitude periodicities from the 2006
WET run which were deemed to be independent frequencies
and not linear combinations, and these are given in Table 2.
The � and m identifications are taken from previous analyses of
this star (Winget et al. 1994; Kepler et al. 2003; Metcalfe 2003;
Provencal et al. 2009) and are based on asymptotic theory as
well as genetic algorithm fits. To calculate the conversion from
bolometric to observed passband fluxes, we must assume values
for Teff and log g. We chose the values of Beauchamp et al.
(1999), Teff = 24,900 K and log g = 7.91, although we have
also used those of Castanheira et al. (2005; Teff = 24,100 K,
log g = 7.91) to assess the uncertainties this choice introduces.
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Table 1
Observing Runs Used for Light Curve Fits

Run Name Telescope Instrument Length (hr)

chin20060527 BAO 2.16 m PMT 4.5
chin20060528 BAO 2.16 m PMT 5.2
chin20060531 BAO 2.16 m PMT 3.9
hawa20060518 0.6 m Apogee 2.2
hawa20060519 0.6 m Apogee 1.7
hawa20060520 0.6 m Apogee 3.5
hawa20060521 0.6 m Apogee 7.8
hawa20060522 0.6 m Apogee 6.6
hawa20060523 0.6 m Apogee 3.7
hawa20060524 0.6 m Apogee 5.7
hawa20060525 0.6 m Apogee 8.8
hawa20060526 0.6 m Apogee 9.1
hawa20060527 0.6 m Apogee 7.8
hawa20060528 0.6 m Apogee 9.1
hawa20060530 0.6 m Apogee 8.7
kpno20060518 KPNO 2.1 m Apogee 7.0
kpno20060519 KPNO 2.1 m Apogee 7.3
kpno20060520 KPNO 2.1 m Apogee 7.6
kpno20060521 KPNO 2.1 m Apogee 7.3
kpno20060522 KPNO 2.1 m Apogee 1.0
kpno20060523 KPNO 2.1 m Apogee 2.9
mcdo20060523 2.1 m Argos 7.4
mcdo20060524 2.1 m Argos 7.2
mcdo20060525 2.1 m Argos 6.4
mcdo20060528b 2.1 m Argos 7.2
mcdo20060529 2.1 m Argos 8.2
nord20060607 2.7 m ALFOSC 7.1
nord20060608 2.7 m ALFOSC 8.0
nord20060609 2.7 m ALFOSC 7.9

Table 2
Independent Modes from the 2006 WET Run

Period k � m
(s)

422.56 8 1 1
423.90 8 1 −1
463.38 9 1 1
464.21 9 1 0
465.03 9 1 −1
571.74 12 1 1
574.16 12 1 0
575.93 12 1 −1
699.68 15 1 0
810.29 18 1 0
852.50 19 1 0
962.38 22 1 0

We began the fitting process with the highest S/N data taken
with the 2.7 m NOT. However, it became apparent that GD 358’s
complex pulsation spectrum required an extended baseline of
data to constrain the phases of closely spaced frequencies.
Fortunately, GD 358’s brightness and large amplitude meant that
a large number of individual observing runs met the required
S/N.

Our simultaneous fit to the runs in Table 1 yields the following
parameters: τ0 = 572.9 ± 6.1 s, N = 23.5 ± 0.1, and θi =
50.◦5 ± 0.◦2. Figure 3 shows the ability of the fit to reproduce
the essential features of the light curve (run mcdo20060523
plotted). Additional results for this fit, including the amplitude
and phase for each mode, are given in Table 3. The given error
bars are formal and should be treated as lower bounds.

Table 3
Simultaneous Fit to GD 358 Data Set: τ0 = 572.9 ± 6.1 s, N = 23.5 ± 0.1,

θ = 50.◦5 ± 0.◦2

Period � m Amplitude Phase (rad)

962.385 1 0 0.1087 ± 0.0012 2.4641 ± 0.0069
852.502 1 0 0.1198 ± 0.0015 3.3007 ± 0.0075
810.291 1 0 0.4581 ± 0.0049 3.1301 ± 0.0030
575.933 1 −1 0.4838 ± 0.0051 3.4434 ± 0.0039
574.162 1 0 0.2257 ± 0.0024 5.5258 ± 0.0062
573.485 1 0 0.1082 ± 0.0016 3.6576 ± 0.0115
571.735 1 1 0.3728 ± 0.0040 2.4489 ± 0.0046
465.034 1 −1 0.1408 ± 0.0021 1.8310 ± 0.0123
464.209 1 0 0.1391 ± 0.0018 2.4672 ± 0.0097
463.376 1 1 0.2540 ± 0.0030 0.2052 ± 0.0073
423.898 1 −1 0.2406 ± 0.0030 2.0455 ± 0.0083
422.561 1 1 0.2537 ± 0.0031 0.6020 ± 0.0077

Figure 3. Comparison of the simultaneous fit of Table 3 (solid line) to the light
curve from run mcdo20060523 (crosses).

(A color version of this figure is available in the online journal.)

To test the sensitivity of the value of τ0 to the � identifications,
we re-computed fits changing the assumed � of the largest
amplitude mode (P = 810.29 s) from � = 1 to � = 2.
With this assumption, the best fit resulted for an identification
with � = 2, m = 1 and had the following parameter values:
τ0 = 569.5 ± 7.6 s, N = 14.5 ± 0.1, and θi = 61.◦3 ± 0.◦1.
This indicates that the value obtained for τ0 does not crucially
depend on the mode identifications of each mode in the fit.

Examination of the fit for each individual run revealed an
apparent modulation of amplitudes, i.e., on some nights the
variations in the light curve were smaller than the fit and on
other nights they were larger. In addition, looking at data from
single sites suggested that the change from a smaller to a larger
amplitude state alternated on a roughly night-to-night timescale.

To test whether a geometric effect or a change in the
background state of the star could be causing the night-to-night
modulation of the amplitudes, we went back and re-fit each run
in Table 1 individually. For these fits we fixed the period and
amplitude of each mode to be those given in Table 3, but we
allowed the inclination angle θi and the phases of the modes to
vary. We also allowed τ0 and N to vary. Thus, from each run
we obtained a best-fit value of the parameters at the time of
the run. In Figure 4, we present the results of this procedure;
we plot the variations in θi , N, and τ0 as a function of time.
While no clear trends are seen in τ0 and N (lower panels), the
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Figure 4. Variation of θi , N, and τ0 as a function of time during the 2006 WET
run. While τ0 and N show no obvious signatures, θi shows variations which may
be sinusoidal in origin.

(A color version of this figure is available in the online journal.)

variations in θi are suggestive of a periodic origin (top panel).
Assuming a sinusoidal variation, we have included the best-
fit sine curve in this plot; it has an amplitude of 14.◦9 ± 1.◦8
and a period of 2.17 ± 0.01 days. On the other hand, if we
ignore the possible origin of these variations and simply consider
them to be separate measures of τ0, N, and θi , then we obtain
fairly conservative limits on the error of the mean values of
these quantities: τ0 = 586.0 ± 11.7 s, N = 27.4 ± 0.7, and
θi = 47.◦5 ± 2.◦2. We return to the question of this modulation
in Section 6.

4. THE SFORZANDO

During the 2006 WET run, GD 358 was stable in that the
amplitudes and phases of its modes were fairly constant over
the 3 week length of the run (except for the modulation detailed
above and in Section 6). However, GD 358 is known to change
its pulsation spectrum on a range of timescales. A spectacular
example of this behavior occurred in 1996. Within a period
of 36 hr, all of the power in the high-k range (pulsations with
periods �700 s) disappeared within detection limits. At the
same time, GD 358 more than doubled its apparent pulsation
amplitude, with power appearing almost exclusively at lower
k, with a period of ∼420 s. Over the next week, its amplitude
decreased to “normal” levels, while the high-k power did not
return for approximately 1 month. This dramatic change is
documented in several papers, most recently in Kepler et al.
(2003) and Provencal et al. (2009). The episode itself is termed
the “sforzando” after a musical term for a sudden and short-lived
increase in loudness.

In Figure 5, we show a section of GD 358’s light curve
during the sforzando. Ironically, during this dramatic episode
the light curve was much simpler. While the amplitude was
larger, the star was essentially a single-mode pulsator, and the
individual pulses were more sinusoidal (less nonlinear) than
before. Still, GD 358 was in a transient state and not all pulses
were identical. The upper and lower panels of Figure 5 show
pulses significantly below and above the fit, while the middle
panel seems to represent a repeating, “quasi-static” state. Even
with these caveats, the relative simplicity of these data is ideal
for nonlinear light curve fitting.

Figure 5. Section of the light curve of GD 358 during the sforzando event in
1996. The crosses are the data points and the curve is the best nonlinear light
curve fit.

(A color version of this figure is available in the online journal.)

Figure 6. Comparison of the derived convective parameters τ0 with values
expected from ML2/α convection. The labeled points are individual objects
and the dashed curves are the calculations. The label “GD 358” represents
GD 358 during the 2006 WET run while “GD 358∗” stands for GD 358 during
its sforzando episode.

(A color version of this figure is available in the online journal.)

From a time series analysis of this short section of data, we
find that these pulses have a period of approximately 420.7 s.
Assuming � = 1 and trying all values of m, we find the best fit
shown in Figure 5: m = 0, τ0 = 41.6 ± 2.3 s, N = 3.6 ± 0.2,
and θi = 56.1 ± 1.1. For � = 1, m = 1 a similar quality fit
can be found, but it has a less plausible inclination angle (∼85◦)
that is not consistent with the values of θi previously found in
this paper; even so, τ0 = 28.1 s for this fit. If we assume � = 2
then the best fit has τ0 ∼ 24.2 s and m = 0, although it requires
such a large intrinsic amplitude that we consider it unphysical.
Summing up, while we have good reasons for preferring the
� = 1, m = 0 identification for our fits, the overall value of τ0
is not strongly dependent on this identification.

Comparing these results to those of Section 3, we find that
τ0 was much smaller during the sforzando than it was dur-
ing the 2006 WET run. This implies that, for whatever reason,
GD 358’s convection zone was thinner during the sforzando.
As we can see from Figure 6, this would imply a Teff sev-
eral thousand degrees hotter than its normal temperature. For
ML2/α = 1.0 convection (e.g., Böhm & Cassinelli 1971), this



No. 1, 2010 TEMPERATURE CHANGE AND OBLIQUE PULSATION IN GD 358 89

Figure 7. Relative intensity of GD 358 as measured relative to its levels after the
sforzando episode. The triangles are data from McDonald Observatory and the
squares are data from Mt. Suhora Observatory. Both data sets indicate a jump
in intensity near BJED ∼ 2450311.

(A color version of this figure is available in the online journal.)

would mean Teff ∼ 27,000 K, which is two to three thousand
degrees hotter than its normal equilibrium state.

Such an increase in temperature would lead to about a 40%
increase in the bolometric luminosity. From Figure 2, we see
that such an increase in the bolometric luminosity translates
into a 15%–20% increase in intensity as measured in a passband
centered at 5200 Å. While such a passband is reasonable for a
CCD + BG40/S8612 filter + atmosphere, the observations in
1996 were made with phototubes, and these are much more
blue sensitive. Thus, for a phototube passband centered around
3800 Å we expect intensity increases of about 20%–25%.

As reported in Table 5 of Provencal et al. (2009), such
an increase in intensity was observed in GD 358 during the
sforzando event. In Figure 7, we plot these data, where the
triangles are data from McDonald Observatory and the squares
are data from Mt. Suhora Observatory in Poland. Both curves
are normalized to a value of 1 near BJED ∼2450311. We
see that these data, although sparse, strongly suggest that
GD 358 underwent a sharp intensity increase and decline of
about 20%–30% during this event. This corroborates our earlier
interpretation that GD 358 had a thinner convection zone with a
smaller value of τ0, and that this thinness was due to its surface
layers being temporarily hotter.

We note that similar results and conclusions have previously
been made by Weidner & Koester (2003). Using the approach
of Ising & Koester (2001) they were the first to make numerical
simulations of GD 358’s light curve during the sforzando event.
As in our present analysis, they found that the shape of the light
curve could only be reproduced for higher effective temperatures
than normally assumed for this star, suggesting a value of
Teff ∼ 27,000 K.

4.1. The Amplitude of the k = 8 Mode

The physical origin of the sforzando event is completely
unknown. All we know for certain is that the amplitudes of
the high-k modes rapidly decreased, leaving power in the k = 8
mode, which itself increased in amplitude by approximately
a factor of 30. While we have no model to explain the
disappearance of power in the high-k modes, in this section
we consider what would happen to the apparent amplitude of
the k = 8 mode if the convection zone were suddenly removed.

One effect of the thermal response of the convection zone
is to attenuate the amplitude of the flux variations incident on
its base. It acts as a low-pass filter, reducing the photospheric
amplitude of a mode according to

ΔFphot

F0
= 1√

1 + (ωτ0)2

ΔFbase

F0
, (6)

where F0 is the equilibrium value of the flux, Fbase and Fphot are
the instantaneous fluxes at the base of the convection zone and
at the photosphere, respectively, and ω is the angular frequency
of the mode (Goldreich & Wu 1999; Wu & Goldreich 1999).

If we assume that the amplitude of the k = 8 mode at the base
of the convection zone was constant throughout the sforzando,
Equation (6) shows that a decrease in τ0 would naturally lead
to an increase in observed amplitude. Thus, for a 420 s mode
we would see an increase of approximately a factor of 8 in its
apparent amplitude as τ0 goes from ∼600 s to ∼40 s. This is
a large factor, but it is still much less than the factor of ∼30
increase that was actually observed. Thus, the k = 8 appears to
have increased its intrinsic amplitude by of order a factor of 4
during the sforzando. How it was able to do this on so short a
timescale remains a mystery.

5. THE CONVECTIVE TIME-SCALE τ0

In Figure 6, we plot the known determinations of the convec-
tive response timescale, τ0, versus Teff for the DBVs. Based on
the discussion in the previous section, GD 358 is plotted twice:
once for the 2006 data and once for the 1996 data. In addition,
we show the position of the DBV PG1351+489 (τ0 ∼ 100 s;
Montgomery 2005), where we have assumed the pure He fit for
its Teff (Beauchamp et al. 1999). As expected, the data indi-
cate an increase in the depth/mass of the convection zone with
decreasing Teff .

We also plot lines in Figure 6 showing the predictions of
ML2/α convection (Böhm & Cassinelli 1971) for various values
of α. We see that while low values of α are excluded (α � 0.6),
values in the range 1.0–1.2 provide a reasonable description of
how τ0 varies with Teff . We note that the log g values determined
for these stars are nearly identical, so they do form an actual
sequence in Teff . In general, however, τ0 is also a function of
log g, albeit a somewhat weaker one.

Our ultimate goal is to map τ0 as a function of both Teff
and log g for both the DBV and DAV instability strips. This
will provide important reference points for new hydrodynamic
simulations of convection which are starting to come online
(e.g., Muthsam et al. 2010). For instance, for a given white dwarf
one can use the measured Teff and log g values and perform a
hydrodynamic simulation of its convection zone. Then, using
Equations (3) and (5) of Wu (2001) one can compute τ0. This
value of τ0 can then be compared with the value derived from
the light curve fits outlined above.

6. THE OBLIQUE PULSATOR MODEL

6.1. The Formalism

In Section 3, we found evidence of a modulation of the
inclination angle θi (see Figure 4). This modulation has a formal
significance level of 14.9/1.8 ∼ 8 σ , which cries out for a
physical interpretation. The most obvious is some form of the
“oblique pulsator” model in which the pulsation axis is inclined
with respect to the rotation axis, and this axis precesses as the
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Table 4
Frequency Solution for Oblique Pulsation Model: frot = 5.362 ± 0.003 μHz

Frequency (μHz) Amplitude (mma) Phase (rad) ΔΦ/2π Independent Frequenciesa

Triplet 1

1736.302 ± 0.004 16.77 ± 0.13 0.739 ± 0.008 1736.302 ± 0.001
1741.664 ± 0.003 10.81 ± 0.13 2.832 ± 0.012 0.510 ± 0.013 1741.665 ± 0.001
1747.027 ± 0.004 1.75 ± 0.13 1.724 ± 0.075 1746.673 ± 0.007

Triplet 2

1738.362 ± 0.005 0.95 ± 0.13 1.268 ± 0.138 1737.962 ± 0.007
1743.725 ± 0.003 5.56 ± 0.13 0.174 ± 0.023 0.517 ± 0.023 1743.738 ± 0.002
1749.087 ± 0.005 12.55 ± 0.13 2.117 ± 0.011 1749.083 ± 0.001

Note. a These are the unconstrained frequency fits of Provencal et al. (2009).

star rotates (Kurtz & Shibahashi 1986; Kurtz 1982). A magnetic
field that is inclined to the rotation axis is usually invoked, and
the pulsations are assumed to be aligned with the magnetic axis.

While this hypothesis does introduce several unknowns (a
magnetic field, the angle between the magnetic and rotation
axes, etc.) it also makes three testable predictions. If we take
f and frot to be the mode frequency in the frame of the star
and the rotational frequency, respectively, then an � = 1 mode
with frequency f aligned with the magnetic axis will appear
as three separate peaks in the Fourier transform (FT) of the
light curve, with frequencies of f − frot, f, and f + frot. For
clarity, we will refer to these peaks as “geometric” peaks as they
only appear because the pulsation axis spins around the rotation
axis, leading to a periodic apparent amplitude modulation of the
mode. This amplitude modulation manifests itself in the FT as
two additional “geometric” peaks on either side of the original
frequency, with the beating of these three peaks producing the
periodic amplitude changes. As this splitting is caused by the
rotation of the star, these frequencies must be equally split to
within measurement errors. This is the first and most stringent
condition the model must face.

Second, the oblique pulsator model predicts a specific phase
relationship for the peaks in a given geometric triplet (or for
higher �, a (2�+1)-multiplet). From Kurtz & Shibahashi (1986),
an � = 1 mode generically has luminosity variations given by

ΔL/L = A− cos[(ω − Ω)t + φ]

+ A0 cos[ωt + φ] + A+ cos[(ω + Ω)t + φ], (7)

where ω and Ω are 2π times f and frot, respectively (see the
Appendix for the complete expressions). These components will
only have the same phase φ for a particular choice of the zero
point of time. For other zero points one can show that this phase
relation translates to

2Φ0 − (Φ+ + Φ−) = 0, (8)

where {Φ−, Φ0, Φ+} are the measured phases of the respective
components. In general, the product A− × A+ can be negative.
For this case, if we define the amplitudes always to be positive
and absorb any minus signs into the phase for each peak, the
relation becomes

2Φ0 − (Φ+ + Φ−) = π. (9)

Defining ΔΦ ≡ 2Φ0 − (Φ+ + Φ−), then from the sign of the
amplitudes in Equations (A2)–(A4) we see that ΔΦ/2π = 0 for
m = 0 modes and ΔΦ/2π = 0.5 for m = ±1 modes. These
phase relations, while less iron-clad than the equal spacing of

the triplets, should be satisfied within the errors for geometric
peaks split by oblique rotation.

A third condition/prediction is the relative amplitudes of
the geometric peaks. Such a calculation makes assumptions
concerning the nature and strength of the magnetic field, so
this prediction of the model is the least reliable of the three.
In Equations (A2)–(A4) in the Appendix, we give expressions
for the amplitudes of the various components of � = 1 modes
perturbed by a magnetic field and oblique rotation. The relevant
parameters are the inclination angle of the rotation axis, θi , the
obliquity of the magnetic axis, β, and x1. The parameter x1 is
given by

x1 ≡ ω
(1)
0 − ω

(1)
1

Ck � Ω
, (10)

where Ck � is the rotational splitting coefficient due to the
Coriolis force, Ω is the angular frequency of rotation, and ω

(1)
0

and ω
(1)
1 are the perturbations to the frequencies of the m = 0 and

m = 1 intrinsic modes due to the magnetic field, respectively.
Even though this is clearly a more model dependent statement,
we would still hope that the amplitudes could approximately be
fit and/or predicted within the oblique pulsator formalism.

6.2. The Results

First, we consider a fit to the k = 12 region of the FT, from
1730 to 1750 μHz. Provencal et al. (2009) found six significant
peaks in this region. We interpret these peaks as resulting from
two components of an � = 1 mode, each split into a geometric
triplet by oblique pulsation. These two original peaks are part
of an intrinsic triplet produced by standard rotational splitting,
but the amplitude of the third member is below our detection
threshold.

We fit two sets of exactly evenly split triplets to the data set,
where the central frequencies of each triplet are 1741.664 and
1743.725 μHz, and the value of the splitting is 5.362 μHz. The
values of the fit parameters we obtained are given in Table 4.
In Figure 8, we show the result of pre-whitening the k = 12
region by this solution. The reduction in power of the FT is
very significant, showing that evenly split triplets are a good
representation of the data. This is a necessary condition for the
oblique pulsator model to be applicable.

Second, we consider the phase relations within each of these
equally split triplets. From Table 4, we see that the first triplet
has ΔΦ/2π = 0.510 ± 0.013 and that the second triplet has
ΔΦ/2π = 0.517 ± 0.023. The oblique pulsator model also
passes this test with flying colors. In addition, the fact that
ΔΦ/2π ∼ 0.5 rather than 0.0 implies that the modes are not
axisymmetric, i.e., |m| = 1 for both modes. For whatever
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Figure 8. Effect of pre-whitening by two identically split triplets in the oblique
pulsator model. The top panel is the original FT of the k = 12 region and
the lower panel is the result of pre-whitening by the two pairs of triplets. The
splitting within each triplet is 5.362 ± 0.003 μHz.

(A color version of this figure is available in the online journal.)

Figure 9. Fit of the calculated amplitudes (open squares) to the observed
amplitudes (points) for the different components of “k = 12” assuming the
oblique pulsator model. The errors on the observed amplitudes are smaller than
the size of the points.

(A color version of this figure is available in the online journal.)

reason, the m = 0 member of the original triplet is not present
at observable amplitudes.

Finally, we wish to test the ability of the oblique pulsator
model to adequately reproduce the amplitudes of the geometric
peaks. To calculate the amplitudes we use the analytical expres-
sions given in the Appendix (see Unno et al. 1989; Kurtz &
Shibahashi 1986), and to perform the fits we have used a ge-
netic algorithm (Charbonneau 1995). This allows us to search
the m values of each intrinsic triplet as well as the values of the
parameters θi , β, and x1. As we demonstrate below, such a fit is
more constrained than one would think given the six data points
and five free parameters.

In Figure 9, we show the result of the fit to the amplitudes in
Table 4. The fit is quite impressive. It has the added bonus that
triplets 1 and 2 are required to originate from |m| = 1 intrinsic
modes and they must have opposite signs. This corroborates our

Figure 10. Pre-whitening of the same region as in Figure 8, but using the full
oblique pulsator model for the amplitudes, frequencies, and phases. Thus, not
only are the frequency splittings constrained, but the amplitudes within a triplet
and their relative phases are as well.

(A color version of this figure is available in the online journal.)

earlier result based on the phases that both triplets originated
from |m| = 1 intrinsic modes.

Given the near equality of the number of data points and free
parameters we wished to assess how easily our model could
reproduce any data set. To do this, we randomly generated
amplitudes for 500 pairs of triplets and fit them in the same
way we fit the data, normalizing the residuals by the mean-
squared amplitudes of the two triplets. We found that in only 11
cases out of 500 were the random amplitudes better fit by our
model than the measured amplitudes were. Thus, we conclude
that our amplitude fits are significant at the ∼98% level.

As a final check on this procedure, we use these amplitudes
together with Equations (A2)–(A4) to pre-whiten the k = 12
region of the FT, as shown in Figure 10. Although considerably
more constrained, this pre-whitening is clearly just as effective
as that shown in Figure 8. Thus, the oblique pulsator model
passes all tests with flying colors when applied to the k = 12
region of the FT.

6.3. Interpretation of the Oblique Pulsator Fits

The relative amplitudes of the peaks within a triplet split
by oblique pulsation/rotation depend on θi , β, and x1 (see
Section 6.1 for a definition of these quantities). From the
amplitude fits obtained in the previous section, we find that
θi = 46.◦3, β = 31.◦8, and x1 = 5.65. This value of θi is close
to that obtained from our nonlinear light curve fits, 47.◦5 ± 2.◦2
(Section 3). This provides an important consistency check on
both methods.

Given that θi is the angle between the rotation axis and our
line of sight and that β is angle between the rotation and
pulsation/magnetic axes, the effective inclination angle of a
mode aligned with the magnetic axis should vary between θi −β
and θi + β as the star rotates, i.e., between 14.◦5 and 78.◦1. From
the top panel of Figure 4, we see that θi varies with about half
of this amplitude. The straightforward explanation for this is
that only the k = 12 modes are affected by oblique rotation,
while the other modes are aligned with the rotation axis. As a
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result, the value of θi shown in Figure 4 represents the average
inclination angle for all modes. Averaging over all modes yields
an inclination angle which varies by about 15◦ rather than the
full 32◦ experienced by the k = 12 modes.

Finally, the parameter x1 is a measure of the relative strength
of the Coriolis and magnetic perturbations; the fit value x1 =
5.65 indicates that the magnetic field is the dominant perturber.
This reinforces the idea that the pulsations of these modes are
tied to the magnetic axis. In addition, for a large-scale dipole
field simple perturbation theory applied to � = 1 and 2 modes
yields

ω
(1)
|m| ∝

{
2
5 + 2

5m2, � = 1
18
7 − 2

7m2, � = 2
, (11)

where ω
(1)
|m| is the perturbation to the frequency of the mode due

to the magnetic field (Montgomery 1994; Jones et al. 1989).
Together with Equation (10), the fact that x1 is positive means
that ω

(1)
0 > ω

(1)
1 , which in turn suggests that � � 2. In reality,

this indicates that these modes, at least in the surface layers,
may not be pure � = 1 modes but contain a mixture of other
higher � components.

The success of the oblique pulsator model in explaining the
k = 12 peaks constitutes evidence that oblique pulsation plays
an important role in GD 358. However, there is little conclusive
evidence that other modes in this star are undergoing oblique
pulsation. On the contrary, the stable k = 8 and 9 triplets are
consistent only with the traditional case of the pulsation axis
aligned with the rotation axis. A possible explanation is that
the outer turning points for the k = 8 and 9 modes are farther
from the surface than they are for the k = 12 modes, so if the
dominant magnetic effects are also confined to the surface layers
then the lower k-modes would not be affected by the magnetic
field and the higher k-modes would.

The magnitudes of the multiplet splittings/fine structure
also present a challenge. For instance, the oblique pulsator
model requires a rotation frequency of 5.36 μHz, whereas the
splittings of the k = 8 and 9 modes, believed to result from
standard rotational splitting, give a value of 7.5 μHz (Provencal
et al. 2009; Winget et al. 1994). Since different modes sample
different regions of the star’s interior, differential rotation in the
radial direction could explain these results.

A further concern is the internal consistency of the oblique
pulsator fit. The central components of each of the triplets in
Table 4 should themselves be members of an intrinsic triplet
which is split by rotation. This splitting is observed to be
2.06 μHz and should equal 2Ck �frot cos β for solid body
rotation of the star. This is satisfied if Ck � ∼ 0.225 instead of
Ck � ∼ 0.5 as is expected for � = 1 modes. The splitting within a
geometric triplet is a direct measure of the surface rotation rate,
while the difference in frequency of the central components of
these triplets (the “intrinsic” modes) is given by 2Ck �frot cos β,
where frot represents a radial average of the rotation profile.
Thus, differential rotation, with the interior rotating more slowly
than the surface layers, could explain these values. An alternate
explanation is that the magnetic field mixes higher � components
into the spatial structure of the k = 12 modes. They would
therefore have rotational constants Ck � indicative of higher
�-modes. Since Ck � ∼ 1/�(� + 1) for moderate to high-k
modes, these modes would have correspondingly smaller values
of Ck �.

A further possibility is that the intrinsic modes have � = 2
instead of � = 1. In this case only three of the five possible
geometric peaks would be large enough to be detectable. First,

we note that the predicted phase relations are the same as for
the � = 1 case, so the measured phase relations support either
case equally. Also, since Ck � ∼ 1/6 for � = 2, using the
rotational splitting of the k = 8 and 9 modes yields a splitting of
2Ck �frot cos β ∼ 2.2 μHz, which is close to the measured value
of 2.06 μHz. In this case, though, the value of the inclination
angle, θi = 22.◦1, does not agree with that from the light curve
fits. Also, the � = 2 fits are somewhat less constrained than the
� = 1 fits: fitting 500 random amplitudes in the same way as the
data, 12% of the fits were better than the fit to the data, making
the � = 2 fit significant at the 88% level.

Even so, given the ability of the oblique pulsator model to de-
scribe (1) the power in the k = 12 region, (2) the phase relations
between the geometric triplets, and (3) the relative amplitudes
within the triplets (to some extent), we believe that the above-
mentioned inconsistencies do not warrant rejection of the model
but rather point us in the direction of future improvements. For
instance, the amplitude calculations include magnetic effects
in a fairly simple way; more sophisticated treatments may be
necessary to adequately model the observations. Also, differen-
tial rotation in the radial direction may be able to resolve the
seeming discrepancy of the Ck,� values for the � = 1 case.

7. DISCUSSION

In many respects GD 358 is a “simple” star to analyze.
For instance, the spacing between the periods of its multiplets
suggests that we are looking at successive radial overtone
numbers of � = 1 modes. This is based both on the fact that
(1) given its distance, mass, and luminosity, only � = 1 modes
allow a consistent solution (Bradley & Winget 1994) and (2)
in many cases these multiplets are well-defined triplets (Winget
et al. 1994). Furthermore, as a DBV it has no hydrogen layer, so
fewer parameters are needed to model its structure. Indeed, it is
the best-studied white dwarf variable and significant constraints
have been placed on its interior structure (Metcalfe et al. 2000;
Metcalfe 2003).

On the other hand, GD 358 is in many respects a complicated
star to model. For instance, while the amplitudes of its modes
can be fairly constant during a WET run, over timescales of a
few months the amplitudes can change significantly. The most
extreme case of amplitude change is the previously discussed
sforzando in which dramatic amplitude changes occurred on a
timescale of a day or less. We currently have no theory that
adequately describes these changes.

What we do know is that two independent lines of evidence
indicate that GD 358 was hotter during the sforzando event.
The first is that the average flux of GD 358 relative to the
comparison stars is larger, and the second is that the nonlinear
light curve fits indicate a thinner convection zone—presumably
the result of an increase in surface temperature. If we assume
that GD 358 remained hotter for approximately a day then such
a temperature increase would require a total energy input of
approximately 6×1036 erg. While detailed nonadiabatic models
of GD 358’s pulsational state just prior to the sforzando would
be required, rough estimates indicate that this amount of energy
may typically be present in the higher k-modes. Thus, if these
modes were somehow damped and deposited their pulsation
energy in the surface layers of the star over the period of a day,
this would explain GD 358’s temporary temperature increase.
Such a scenario would explain both the temperature increase
and the disappearance of the high-k modes, although more
detailed models would be necessary to check quantitatively the
energetics.
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We note that an increase in the apparent amplitude of the
k = 8 mode is a generic feature of a thinner convection zone
(e.g., smaller value of τ0), although the predicted factor (∼8) is
still less than what was observed (∼30). While speculative, it is
also possible that some mechanism may have transferred power
from the high-k to the low-k modes, although we currently do not
understand how this would proceed. Perhaps least likely is the
possibility that the hotter “equilibrium” state of the sforzando
allowed mode growth and damping to occur on timescales given
by linear theory and that these timescales were many orders of
magnitude shorter than expected.

Another possibility is that the event was tied to a magnetic
phenomenon and that this phenomenon somehow led to a
temperature increase as well as a change in the amplitudes
of the various modes. There are several reasons that this is
not completely far-fetched. First, the oblique pulsator model
used here requires a mechanism to align modes with an axis
other than the rotation axis, and a magnetic field can provide
this. Second, the k = 8 and 9 triplets are asymmetric in the
sense that the m = 0 mode is closer to either the m = +1 or
m = −1 mode (see Figures 18 and 19 of Provencal et al. 2009).
Perhaps not coincidentally, the asymmetry seen in the splittings
of the k = 8 and 9 modes reversed themselves at the time
of the sforzando, and this change has persisted ever since. This
timescale of years is consistent with what is seen in the magnetic
cycle of the Sun and other stars (Elsworth et al. 1990; Libbrecht
& Woodard 1990). Finally, small but definite shifts in frequency
of order 0.5 μHz have been seen on timescales as short as 3
weeks. These could be a sign of magnetic activity: changes in
the surface magnetic field could produce slight perturbations in
the mode frequencies (Jones et al. 1989), and the timescale of a
few weeks for these to take place again seems plausible.

A final unresolved issue for GD 358 is differential rotation.
Taken at face value, the difference in triplet splitting between
high-k and low-k modes implies significant differential rotation
(Winget et al. 1994). In addition, the oblique pulsator model as
applied in this paper implies differential rotation: the k = 12
region requires a surface rotation rate of ∼2.17 days whereas
the k = 8 and 9 splittings give a rotation rate of ∼1.5 days.
The k = 8 and 9 splittings reflect a bulk average of the rotation
rate whereas the frequency differences within the geometric
triplets in the k = 12 region give us the rate at the surface. In
addition, the frequency splitting between the intrinsic modes in
the k = 12 region also implies differential rotation, albeit with
the interior rotating less rapidly than the surface. Previously,
detailed examinations of the frequency splittings in GD 358 as
a function of k have been inconclusive (Kawaler et al. 1999),
but such analyses did not take into account the possibility of
oblique pulsation.

An intriguing possibility is that the pulsations themselves lead
to differential rotation. Townsend (2009) has recently shown
that g-modes in massive stars can transport angular momentum
relatively rapidly compared to evolutionary timescales. This
transport occurs predominantly in regions in which the mode
is driven and/or damped and leads to differential rotation. If
this effect occurs in white dwarfs then it could alter the rotation
rate from the surface down past the base of the convection
zone into the radiative damping layers. If the rotation profile of
these outer layers is continually changing then this would also
explain the small shifts in frequency which have been detected in
GD 358. In addition, a more dramatic shift in the rotation profile
could be associated with the sforzando event. Perhaps the outer
part of GD 358’s rotation profile experienced a shift during this

event and it has persisted in its new state for the past several
years. This would explain the shift in asymmetry of the k = 8
and 9 triplets that also occurred at this time (see Provencal et al.
2009).

8. CONCLUSIONS

In this paper, we have extended our nonlinear light curve
fitting technique to the multiperiodic pulsator GD 358. Our fit
to the 2006 WET data provides a good match to the light curves
and we find that the thermal response time of its convection zone
is τ0 = 572.9 ± 6.1 s. This is considerably larger than that of the
star PG1351+489, for which τ0 ∼ 100 s (Montgomery 2005).
This difference in τ0 is consistent with the effective temperatures
of these stars: the pure He solution for PG1351+489 yields a
Teff which is ∼2000 K hotter than that for GD 358.

We also obtained a fit to the light curve of GD 358 during
the sforzando event in 1996. These fits showed that GD 358 had
τ0 ∼ 42 ± 2 s, a value much less than that determined from
the 2006 data. This suggests that its effective temperature was
approximately 2000 K hotter in 1996 than in 2006, and this is
consistent with the estimate of Weidner & Koester (2003) that
the light curve shape suggests Teff ∼ 27,000 K. Independent
evidence of GD 358’s brightness relative to comparison stars
is also consistent with such a temperature increase at the time
of the sforzando (Provencal et al. 2009). The physical origin of
this temperature increase will be the subject of future work.

As expected, these data indicate an increase in the depth/
mass of the convection zone with decreasing Teff . A similar
trend is given by ML2/α = 1.1 convection (Böhm & Cassinelli
1971), although the slope of the theoretical relation appears
less steep than that of the data. In addition, lower values of
α � 0.6 are excluded. In general, τ0 is also a function of log g,
albeit a somewhat weaker one. Our ultimate goal is to map τ0
as a function of both Teff and log g for both the DBV and DAV
instability strips. These data will provide insight into the physics
of convection, still one of the largest uncertainties in stellar
modeling. They will also serve as important constraints for new
hydrodynamic simulations of convection which are starting to
come online.

Multiple lines of evidence point to some of GD 358’s modes
undergoing oblique pulsation, in particular, the peaks in the
k = 12 region. First, these peaks can be fit with two sets of
exactly evenly spaced triplets. Second, the relative phases of
each of the components within the triplet indicate that each
originates as a single m = −1 or +1 mode aligned with the
magnetic axis; as the star rotates, the magnetic axis precesses
around the rotation axis, generating a triplet for each intrinsic
mode. Finally, the oblique pulsator model qualitatively and
quantitatively fits the amplitudes of the peaks seen in the FT.
Taken together, this marks the first time that oblique pulsation
has been seen in a white dwarf variable.

Having now identified the characteristics of oblique pulsation
in GD 358 we now know what to look for in other white dwarf
variables; we have found preliminary indications of it in other
stars and in other data sets of GD 358. As discussed in the
previous sections, oblique pulsation may prove to be a diagnostic
of both the magnetic field and its changes as well as a diagnostic
of differential rotation. This opens an exciting chapter in the
seismology of these objects.
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APPENDIX

EQUATIONS OF OBLIQUE PULSATION FOR � = 1 AND 2 MODES

The formulae given below are taken from Unno et al. (1989). Following Kurtz & Shibahashi (1986), we use ω instead of σ for the
angular frequencies of the modes. We use ω(0) for the unperturbed frequency of the mode in a non-rotating, non-magnetic star, and
ω

(1)
|m| for the perturbation to this frequency due to the magnetic field (but not due to rotation). The pulsation axis is assumed to be

aligned with the magnetic axis, which makes an angle of β with the rotation axis, and θi is taken to be the angle between the rotation
axis and our line of sight. As the pulsation and magnetic axes rotate around the star, we find that a mode of given frequency and {�,m}
values is split into a triplet of peaks. We tabulate below the resulting time dependence of modes having the given values of � and m.
In the following, x1 is defined to be

x1 ≡ ω
(1)
0 − ω

(1)
1

CΩ
, (A1)

where C is the rotational splitting coefficient due to the Coriolis force for � = 1 modes and Ω is the angular velocity of rotation at the
stellar surface. Since x1 is the ratio of the rotational splitting to the splitting induced by the magnetic field it provides a useful estimate
of the relative importance of the two effects. Also, since it depends on the difference in magnetic splitting between m = 0 and |m| = 1
modes, it is sensitive to the geometry of the magnetic field. With these definitions, the luminosity perturbations associated with � = 1
oblique pulsation are given below:
� = 1, m = −1:

ΔL/L = 1√
2

(
1 − 1 + cos β

x1

)
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2
sin θi cos
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(A2)

� = 1, m = 0:
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(A3)

� = 1, m = 1:
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]
(A4)

More generally for arbitrary � and m, we define x|m|

x|m| ≡ ω
(1)
0 − ω

(1)
|m|

CΩ
, (A5)

where C is the rotational splitting coefficient for the appropriate � values. With these definitions, the luminosity perturbations
associated with � = 2 oblique pulsation are given below:
� = 2, m = −2:
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√
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sin4 β
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)
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]
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(A6)

� = 2, m = −1:
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(A7)

� = 2, m = 0:
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(A8)

� = 2, m = +1:
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(A9)

� = 2, m = +2:

ΔL/L =
√

3

8
cos4 β

2
sin2 θi

(
1 +

2(1 − cos β)

x1 − x2

)
cos

[(
ω(0) + ω

(1)
2 − 2CΩ cos β − 2Ω

)
t + φ

]

−
√

3

8
cos2 β

2
sin β sin 2θi

(
1 +

1 − 2 cos β

x1 − x2

)
cos

[(
ω(0) + ω

(1)
2 − 2CΩ cos β − Ω

)
t + φ

]



96 MONTGOMERY ET AL. Vol. 716

+
1
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