175 research outputs found

    Safety shield for vacuum/pressure chamber viewing port

    Get PDF
    Observers are protected from flying debris resulting from a failure of a vacuum or pressure chamber viewing port following an implosion or explosion by an optically clear shatter resistant safety shield which spaced apart from the viewing port on the outer surface of the chamber

    Post common envelope binaries from the SDSS VI. SDSS J120615.73+510047.0 : a new low accretion rate magnetic binary

    Get PDF
    We report the discovery of the ninth pre-polar consisting of a late-type ZAMS secondary and a magnetic white dwarf. The white dwarf accretes at an extreme low rate, \dot{M} \sim 10^ MM_\odot yr-1, from the wind of the companion donor star. The source was found in our systematic search for WD/MS binaries within SDSS/SEGUE. Based on seven Sloan spectra we estimate a binary period of ~200, 230, or 270 min. The UV to IR spectral energy distribution was decomposed into a dM3-dM4 ZAMS secondary and a cool white dwarf, ~9000 K, which consistently imply a distance between 360 and 420 pc. The optical spectrum displays one pronounced cyclotron hump, likely originating from a low-temperature plasma, ~1 keV, in a field of 108 MG. We comment on the evolutionary link between polars and pre-polars

    Post common envelope binaries from SDSS. II : identification of 9 close binaries with VLT/FORS2

    Get PDF
    Context. Post common envelope binaries (PCEBs) consisting of a white dwarf and a main sequence star are ideal systems to use to calibrate current theories of angular momentum loss in close compact binary stars. The potential held by PCEBs for further development of close binary evolution could so far not be exploited due to the small number of known systems and the inhomogeneity of the sample. The Sloan Digital Sky Survey is changing this scene dramatically, as it is very efficient in identifying white dwarf/main sequence (WDMS) binaries, including both wide systems whose stellar components evolve like single stars and − more interesting in the context of close binary evolution − PCEBs. Aims. We pursue a large-scale follow-up survey to identify and characterise the PCEBs among the WDMS binaries that have been found with SDSS. We use a two-step strategy with the identification of PCEBs among WDMS binaries in the first phase and orbital period determinations in the second phase. Here we present first results of our ESO-VLT/FORS2 pilot study that targets the identification of the PCEBs among the fainter (g >∼18.5) SDSSWDMS binaries. Methods. From published SDSS catalogues we selected 26 WDMS binaries to be observed with ESO-VLT/FORS2 in service mode. The design of the observations was to get two spectra per object separated by at least one night.We used the Na I λλ 8183.27, 8194.81 doublet to measure radial velocity variations of our targets and a spectral decomposition/fitting technique to determine the white dwarf effective temperatures and surface gravities, masses, and secondary star spectral types for all WDMS binaries in our sample. Results. Among the 26 observed WDMS binaries, we find 9 strong PCEB candidates showing clear (≥3σ) radial velocity variations, and we estimate the fraction of PCEBs among SDSS WDMS binaries to be ∼35 ± 12%. We find indications of a dependence of the relative number of PCEBs among SDSSWDMS binaries on the spectral type of the secondary star. These results are subject to small number statistics and need to be confirmed by additional observations. Using Magellan-Clay/LDSS3, we measured the orbital periods of two PCEB candidates, SDSS J1047+0523 and SDSS J1414–0132, to be 9.17 h and 17.48 h, respectively. Conclusions. This pilot study demonstrates that our survey is highly efficient in identifying PCEBs among the SDSSWDMS binaries, and it will indeed provide the observational parameters that are needed to constrain the theoretical models of close binary evolution

    Determining the nature of faint X-ray sources from the ASCA Galactic center survey

    Get PDF
    © 2015, Pleiades Publishing, Inc. We present the results of the the identification of six objects from the ASCA Galactic center and Galactic plane surveys: AX J173548-3207, AX J173628-3141, AX J1739.5-2910, AX J1740.4-2856, AX J1740.5-2937, and AX J1743.9-2846. Chandra, XMM-Newton, and XRT/Swift X-ray data have been used to improve the positions of the optical counterparts to these sources. Thereafter, we have carried out a series of spectroscopic observations of the established optical counterparts at the RTT-150 telescope. Analysis of X-ray and optical spectra as well as photometric measurements in a wide wavelength range based on optical and infrared catalogs has allowed the nature of the program sources to be determined. Two X-ray objects have been detected in the error circle of AX J173628-3141: one is a coronally active G star and the other may be a symbiotic star, a red giant with an accreting white dwarf. Three sources (AX J1739.5-2910, AX J1740.5-2937, AX J1743.9-2846) have turned out to be active G-K stars, presumably RS CVn objects, one (AX J1740.4-2856) is an M dwarf, and another one (AX J173548-3207) most likely a low-mass X-ray binary in its low state. The distances and corresponding luminosities of the sources in the soft X-ray band (0.5–10 keV) have been estimated; analysis of deep INTEGRAL Galactic center observations has not revealed a statistically significant flux at energies >20 keV from any of them

    Semi-Hard Scattering Unraveled from Collective Dynamics by Two-Pion Azimuthal Correlations in 158 A GeV/c Pb + Au Collisions

    Full text link
    Elliptic flow and two-particle azimuthal correlations of charged hadrons and high-pTp_T pions (pT>p_T> 1 GeV/cc) have been measured close to mid-rapidity in 158A GeV/cc Pb+Au collisions by the CERES experiment. Elliptic flow (v2v_2) rises linearly with pTp_T to a value of about 10% at 2 GeV/cc. Beyond pTp_T\approx 1.5 GeV/cc, the slope decreases considerably, possibly indicating a saturation of v2v_2 at high pTp_T. Two-pion azimuthal anisotropies for pT>p_T> 1.2 GeV/cc exceed the elliptic flow values by about 60% in mid-central collisions. These non-flow contributions are attributed to near-side and back-to-back jet-like correlations, the latter exhibiting centrality dependent broadening.Comment: Submitted to Phys. Rev. Letters, 4 pages, 5 figure

    Azimuthal dependence of pion source radii in Pb+Au collisions at 158 A GeV

    Get PDF
    We present results of a two-pion correlation analysis performed with the Au+Pb collision data collected by the upgraded CERES experiment in the fall of 2000. The analysis was done in bins of the reaction centrality and the pion azimuthal emission angle with respect to the reaction plane. The pion source, deduced from the data, is slightly elongated in the direction perpendicular to the reaction plane, similarly as was observed at the AGS and at RHIC.Comment: 5 pages, 2 figure

    Leptonic and charged kaon decay modes of the ϕ\phi meson measured in heavy-ion collisions at the CERN SPS

    Full text link
    We report a measurement of ϕ\phi meson production in central Pb+Au collisions at Elab_{lab}/A=158 GeV. For the first time in heavy-ion collisions, ϕ\phi mesons were reconstructed in the same experiment both in the K+^+K^- and the dilepton decay channel. Near mid-rapidity, this yields rapidity densities, corrected for production at the same rapidity value, of 2.05 +- 0.14(stat) +- 0.25(syst) and 2.04 +- 0.49(stat)+-{0.32}(syst), respectively. The shape of the measured transverse momentum spectra is also in close agreement in both decay channels. The data rule out a possible enhancement of the ϕ\phi yield in the leptonic over the hadronic channel by a factor larger than 1.6 at 95% CL.Comment: 11 pages, 4 figures,submitted to Phys. Rev. Let
    corecore