48 research outputs found

    Integrated Transcriptomics, Metabolomics, and Lipidomics Profiling in Rat Lung, Blood, and Serum for Assessment of Laser Printer-Emitted Nanoparticle Inhalation Exposure-Induced Disease Risks

    Get PDF
    settings Open AccessArticle Integrated Transcriptomics, Metabolomics, and Lipidomics Profiling in Rat Lung, Blood, and Serum for Assessment of Laser Printer-Emitted Nanoparticle Inhalation Exposure-Induced Disease Risks by Nancy Lan Guo 1,*,Tuang Yeow Poh 2,Sandra Pirela 3,Mariana T. Farcas 4,Sanjay H. Chotirmall 2,Wai Kin Tham 5,Sunil S. Adav 5,Qing Ye 1,Yongyue Wei 6,Sipeng Shen 2,David C. Christiani 2,Kee Woei Ng 3,7,8,Treye Thomas 9,Yong Qian 4 andPhilip Demokritou 3 1 West Virginia University Cancer Institute/School of Public Health, West Virginia University, Morgantown, WV 26506, USA 2 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore 3 Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA 4 Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA 5 Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore 6 Key Lab for Modern Toxicology, Department of Epidemiology and Biostatistics and Ministry of Education (MOE), School of Public Health, Nanjing Medical University, Nanjing 210029, China 7 School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore 8 Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, Singapore 637141, Singapore 9 Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Rockville, MD 20814, USA * Author to whom correspondence should be addressed. Int. J. Mol. Sci. 2019, 20(24), 6348; https://doi.org/10.3390/ijms20246348 Received: 2 December 2019 / Revised: 12 December 2019 / Accepted: 13 December 2019 / Published: 16 December 2019 (This article belongs to the Special Issue Advances in Nanostructured Materials between Pharmaceutics and Biomedicine) Download PDF Browse Figures Review Reports Cite This Paper Abstract Laser printer-emitted nanoparticles (PEPs) generated from toners during printing represent one of the most common types of life cycle released particulate matter from nano-enabled products. Toxicological assessment of PEPs is therefore important for occupational and consumer health protection. Our group recently reported exposure to PEPs induces adverse cardiovascular responses including hypertension and arrythmia via monitoring left ventricular pressure and electrocardiogram in rats. This study employed genome-wide mRNA and miRNA profiling in rat lung and blood integrated with metabolomics and lipidomics profiling in rat serum to identify biomarkers for assessing PEPs-induced disease risks. Whole-body inhalation of PEPs perturbed transcriptional activities associated with cardiovascular dysfunction, metabolic syndrome, and neural disorders at every observed time point in both rat lung and blood during the 21 days of exposure. Furthermore, the systematic analysis revealed PEPs-induced transcriptomic changes linking to other disease risks in rats, including diabetes, congenital defects, auto-recessive disorders, physical deformation, and carcinogenesis. The results were also confirmed with global metabolomics profiling in rat serum. Among the validated metabolites and lipids, linoleic acid, arachidonic acid, docosahexanoic acid, and histidine showed significant variation in PEPs-exposed rat serum. Overall, the identified PEPs-induced dysregulated genes, molecular pathways and functions, and miRNA-mediated transcriptional activities provide important insights into the disease mechanisms. The discovered important mRNAs, miRNAs, lipids and metabolites may serve as candidate biomarkers for future occupational and medical surveillance studies. To the best of our knowledge, this is the first study systematically integrating in vivo, transcriptomics, metabolomics, and lipidomics to assess PEPs inhalation exposure-induced disease risks using a rat model

    A multi-omic study reveals BTG2 as a reliable prognostic marker for early-stage non-small cell lung cancer

    Get PDF
    B-cell translocation gene 2 (BTG2) is a tumour suppressor protein known to be downregulated in several types of cancer. In this study, we investigated a potential role for BTG2 in early-stage non-small cell lung cancer (NSCLC) survival. We analysed BTG2 methylation data from 1230 early-stage NSCLC patients from five international cohorts, as well as gene expression data from 3038 lung cancer cases from multiple cohorts. Three CpG probes (cg01798157, cg06373167, cg23371584) that detected BTG2 hypermethylation in tumour tissues were associated with lower overall survival. The prognostic model based on methylation could distinguish patient survival in the four cohorts [hazard ratio (HR) range, 1.51-2.21] and the independent validation set (HR=1.85). In the expression analysis, BTG2 expression was positively correlated with survival in each cohort (HR range, 0.28-0.68), which we confirmed with meta-analysis (HR=0.61, 95% CI 0.54-0.68). The three CpG probes were all negatively correlated with BTG2 expression. Importantly, an integrative model of BTG2 methylation, expression and clinical information showed better predictive ability in the training set and validation set. In conclusion, the methylation and integrated prognostic signatures based on BTG2 are stable and reliable biomarkers for early-stage NSCLC. They may have new applications for appropriate clinical adjuvant trials and personalized treatments in the future

    Epigenetic modifications in KDM lysine demethylases associate with survival of early-stage NSCLC

    Get PDF
    BACKGROUND: KDM lysine demethylase family members are related to lung cancer clinical outcomes and are potential biomarkers for chemotherapeutics. However, little is known about epigenetic alterations in KDM genes and their roles in lung cancer survival. METHODS: Tumor tissue samples of 1230 early-stage non-small cell lung cancer (NSCLC) patients were collected from the five independent cohorts. The 393 methylation sites in KDM genes were extracted from epigenome-wide datasets and analyzed by weighted random forest (Ranger) in discovery phase and validation dataset, respectively. The variable importance scores (VIS) for the sites in top 5% of both discovery and validation sets were carried forward for Cox regression to further evaluate the association with patient's overall survival. TCGA transcriptomic data were used to evaluate the correlation with the corresponding DNA methylation. RESULTS: DNA methylation at sites cg11637544 in KDM2A and cg26662347 in KDM1A were in the top 5% of VIS in both discovery phase and validation for squamous cell carcinomas (SCC), which were also significantly associated with SCC survival (HRcg11637544 = 1.32, 95%CI, 1.16-1.50, P = 1.1 × 10-4; HRcg26662347 = 1.88, 95%CI, 1.37-2.60, P = 3.7 × 10-3), and correlated with corresponding gene expression (cg11637544 for KDM2A, P = 1.3 × 10-10; cg26662347 for KDM1A P = 1.5 × 10-5). In addition, by using flexible criteria for Ranger analysis followed by survival classification tree analysis, we identified four clusters for adenocarcinomas and five clusters for squamous cell carcinomas which showed a considerable difference of clinical outcomes with statistical significance. CONCLUSIONS: These findings highlight the association between somatic DNA methylation in KDM genes and early-stage NSCLC patient survival, which may reveal potential epigenetic therapeutic targets

    Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma

    Get PDF
    Limited studies have focused on developing prognostic models with trans-omics biomarkers for early-stage lung adenocarcinoma (LUAD). We performed integrative analysis of clinical information, DNA methylation, and gene expression data using 825 early-stage LUAD patients from 5 cohorts. Ranger algorithm was used to screen prognosis-associated biomarkers, which were confirmed with a validation phase. Clinical and biomarker information was fused using an iCluster plus algorithm, which significantly distinguished patients into high- and low-mortality risk groups (Pdiscovery = 0.01 and Pvalidation = 2.71×10-3). Further, potential functional DNA methylation-gene expression-overall survival pathways were evaluated by causal mediation analysis. The effect of DNA methylation level on LUAD survival was significantly mediated through gene expression level. By adding DNA methylation and gene expression biomarkers to a model of only clinical data, the AUCs of the trans-omics model improved by 18.3% (to 87.2%) and 16.4% (to 85.3%) in discovery and validation phases, respectively. Further, concordance index of the nomogram was 0.81 and 0.77 in discovery and validation phases, respectively. Based on systematic review of published literatures, our model was superior to all existing models for early-stage LUAD. In summary, our trans-omics model may help physicians accurately identify patients with high mortality risk

    SIPA1L3 methylation modifies the benefit of smoking cessation on lung adenocarcinoma survival: an epigenomic-smoking interaction analysis

    Get PDF
    Smoking cessation prolongs survival and decreases mortality of patients with non‐small‐cell lung cancer (NSCLC). In addition, epigenetic alterations of some genes are associated with survival. However, potential interactions between smoking cessation and epigenetics have not been assessed. Here, we conducted an epigenome‐wide interaction analysis between DNA methylation and smoking cessation on NSCLC survival. We used a two‐stage study design to identify DNA methylation-smoking cessation interactions that affect overall survival for early‐stage NSCLC. The discovery phase contained NSCLC patients from Harvard, Spain, Norway, and Sweden. A histology‐stratified Cox proportional hazards model adjusted for age, sex, clinical stage, and study center was used to test DNA methylation-smoking cessation interaction terms. Interactions with false discovery rate‐q ≤ 0.05 were further confirmed in a validation phase using The Cancer Genome Atlas database. Histology‐specific interactions were identified by stratification analysis in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) patients. We identified one CpG probe (cg02268510SIPA1L3) that significantly and exclusively modified the effect of smoking cessation on survival in LUAD patients [hazard ratio (HR)interaction = 1.12; 95% confidence interval (CI): 1.07-1.16; P = 4.30 × 10-7]. Further, the effect of smoking cessation on early‐stage LUAD survival varied across patients with different methylation levels of cg02268510SIPA1L3. Smoking cessation only benefited LUAD patients with low methylation (HR = 0.53; 95% CI: 0.34-0.82; P = 4.61 × 10-3) rather than medium or high methylation (HR = 1.21; 95% CI: 0.86-1.70; P = 0.266) of cg02268510SIPA1L3. Moreover, there was an antagonistic interaction between elevated methylation of cg02268510SIPA1L3 and smoking cessation (HRinteraction = 2.1835; 95% CI: 1.27-3.74; P = 4.46 × 10−3). In summary, smoking cessation benefited survival of LUAD patients with low methylation at cg02268510SIPA1L3. The results have implications for not only smoking cessation after diagnosis, but also possible methylation‐specific drug targeting

    Analysis of Dyakonov surface waves existing at the interface of an isotropic medium and a conductor-backed uniaxial slab

    No full text
    In this paper, Dyakonov surface waves (Dyakonov SWs) existing at the interface between a semi-infinite isotropic medium and a conductor-backed uniaxial slab are analyzed with the help of an exponential-matrix method. The boundary conditions at the interface are formulated using eigenvalues and eigenvectors of two partnering media. Based on this, the existence region of Dyakonov SWs is formulated and proven to be highly dependent on the thickness of the uniaxial slab. Some relevant characteristics of the propagating Dyakonov SWs, such as the distribution of the propagation constant, and the electric- and magnetic-field distributions, are introduced and investigated. In addition, this method can be applied to analyze other finite thickness structures.Published versio

    Development and validation of an immune gene-set based Prognostic signature in ovarian cancer

    No full text
    Background: Ovarian cancer (OV) is the most lethal gynecological cancer in women. We aim to develop a generalized, individualized immune prognostic signature that can stratify and predict overall survival for ovarian cancer. Methods: The gene expression profiles of ovarian cancer tumor tissue samples were collected from 17 public cohorts, including 2777 cases totally. Single sample gene set enrichment (ssGSEA) analysis was used for the immune genes from ImmPort database to develop an immune-based prognostic score for OV (IPSOV). The signature was trained and validated in six independent datasets (n = 519, 409, 606, 634, 415, 194). Findings: The IPSOV significantly stratified patients into low- and high-immune risk groups in the training set and in the 5 validation sets (HR range: 1.71 [95%CI: 1.32–2.19; P = 4.04 × 10−5] to 2.86 [95%CI: 1.72–4.74; P = 4.89 × 10−5]). Further, we compared IPSOV with nine reported ovarian cancer prognostic signatures as well as the clinical characteristics including stage, grade and debulking status. The IPSOV achieved the highest mean C-index (0.625) compared with the other signatures (0.516 to 0.602) and clinical characteristics (0.555 to 0.583). Further, we integrated IPSOV with stage, grade and debulking, which showed improved prognostic accuracy than clinical characteristics only. Interpretation: The proposed clinical-immune signature is a promising biomarker for estimating overall survival in ovarian cancer. Prospective studies are needed to further validate its analytical accuracy and test the clinical utility. Fund: This work was supported by National Key Research and Development Program of China, National Natural Science Foundation of China and Natural Science Foundation of the Jiangsu Higher Education Institutions of China. Keywords: Ovarian cancer, Immune, Gene expression, Prognostic signatur

    Global COVID-19 Pandemic Waves: Limited Lessons Learned Worldwide over the Past Year

    No full text
    The occurrence of coronavirus disease 2019 (COVID-19) was followed by a small burst of cases around the world; afterward, due to a series of emergency non-pharmaceutical interventions (NPIs), the increasing number of confirmed cases slowed down in many countries. However, the lifting of control measures by the government and the public’s loosening of precautionary behaviors led to a sudden increase in cases, arousing deep concern across the globe. arousing deep concern across the globe. This study evaluates the situation of the COVID-19 pandemic in countries and territories worldwide from January 2020 to February 2021. According to the time-varying reproduction number (R(t)) of each country or territory, the results show that almost half of the countries and territories in the world have never controlled the epidemic. Among the countries and territories that had once contained the occurrence, nearly half failed to maintain their prevention and control, causing the COVID-19 pandemic to rebound across the world—resulting in even higher waves in half of the rebounding countries or territories. This work also proposes and uses a time-varying country-level transmission risk score (CTRS), which takes into account both R(t) and daily new cases, to demonstrate country-level or territory-level transmission potential and trends. Time-varying hierarchical clustering of time-varying CTRS values was used to successfully reveal the countries and territories that contributed to the recent aggravation of the global pandemic in the last quarter of 2020 and the beginning of 2021, and to identify countries and territories with an increasing risk of COVID-19 transmission in the near future. Furthermore, a regression analysis indicated that the introduction and relaxation of NPIs, including workplace closure policies and stay-at-home requirements, appear to be associated with recent global transmission changes. In conclusion, a systematic evaluation of the global COVID-19 pandemic over the past year indicates that the world is now in an unexpected situation, with limited lessons learned. Summarizing the lessons learned could help in designing effective public responses for constraining future waves of COVID-19 worldwide
    corecore