
Mutant-allele fraction heterogeneity
is associated with non-small

cell lung cancer patient survival
The Harvard community has made this

article openly available.  Please share  how
this access benefits you. Your story matters

Citation Shen, Sipeng, Yongyue Wei, Ruyang Zhang, Mulong Du, Weiwei
Duan, Sheng Yang, Yang Zhao, David C. Christiani, and Feng Chen.
2018. “Mutant-allele fraction heterogeneity is associated with
non-small cell lung cancer patient survival.” Oncology Letters 15
(1): 795-802. doi:10.3892/ol.2017.7428. http://dx.doi.org/10.3892/
ol.2017.7428.

Published Version doi:10.3892/ol.2017.7428

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:35014986

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH 

https://core.ac.uk/display/154893737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Mutant-allele%20fraction%20heterogeneity%20is%20associated%20with%20non-small%20cell%20lung%20cancer%20patient%20survival&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=62612804aff0bd0d3d0f3bf21e0460eb&department
http://nrs.harvard.edu/urn-3:HUL.InstRepos:35014986
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


ONCOLOGY LETTERS  15:  795-802,  2018

Abstract. Genetic intratumor heterogeneity is associated 
with tumor occurrence, development and overall outcome. 
The present study aims to explore the association between 
mutant-allele fraction (MAF) heterogeneity and patient 
overall survival in lung cancer. Somatic mutation data of 939 
non-small cell lung cancer (NSCLC) cases were obtained from 
The Cancer Genome Atlas. Entropy-based mutation allele 
fraction (EMAF) score was used to describe the uncertainty 
of individual somatic mutation patterns and to further analyze 
the association with patient overall survival. Results indicated 
that association between EMAF and overall survival was 
significant in the discovery set [hazard ratio (H)R=1.62; 95% 
confidence interval (CI): 1.08‑2.41; P=0.018] and replication 
set (HR=1.63; 95% CI: 1.11‑2.37; P=0.011). In addition, EMAF 
was also significantly different in lung adenocarcinoma and 
squamous cell carcinoma. Furthermore, a significant differ-
ence was indicated in early-stage patients. Results from c-index 
analysis indicated that EMAF improved the model predictive 
performance on the 3-year survival beyond that of tradi-
tional clinical staging, particularly in early‑stage patients. In 
conclusion, EMAF successfully reflected MAF heterogeneity 

among patients with NSCLC. Additionally, EMAF improved 
the predictive performance in early-stage patient prognosis 
beyond that of traditional clinical staging. In clinical applica-
tion, EMAF appears to identify a subset of early-stage patients 
with a poor prognosis and therefore may help inform clinical 
decisions regarding the application of chemotherapy after 
surgery.

Introduction

Lung cancer, predominantly non-small cell lung cancer 
(NSCLC), is the most commonly diagnosed malignancy and 
is a leading cause of cancer-related deaths worldwide (1,2). 
Diagnosis often occurs in late-stage disease, when most patients 
have missed the optimal window for surgery, so prognosis is 
usually poor. However, genomic profiling of tumor tissues 
can identify biomarkers for early diagnosis of NSCLC and its 
therapy. Early-diagnosed patients have considerably favorable 
prognosis, although divergence still exists among patients with 
similar clinical characteristics (3). This phenomenon indicates 
the importance of improved understanding of genetic and 
molecular heterogeneity among these patients.

Intratumor heterogeneity has been shown using somatic 
mutations and DNA copy number alterations among several 
cancers, including lung cancer (4,5), and is associated 
with worse clinical outcomes (6-10). Several methods have 
been proposed to explore tumor heterogeneity (11-14). 
However, most previous investigations are small‑scale 
studies or single cell analyses, which are difficult to extend 
to large populations. Recently, a study has proposed a new 
method, mutant‑allele tumor heterogeneity (MATH), that 
has been successfully applied in head and neck squamous 
cell carcinoma (HNSC) populations to differentiate patient 
prognosis (15-18). However, MATH is not generalizable to lung 
cancer using data from The Cancer Genome Atlas (TCGA), 
potentially due to different distribution patterns of mutational 
fractions they cannot fully reflect in lung cancer populations.

Therefore, we propose a measurement to describe 
mutant-allele fraction (MAF) heterogeneity that was evalu-
ated based on whole exome sequencing of tumor and matched 
normal DNA (19) in lung cancer populations from TCGA (20). 

Mutant‑allele fraction heterogeneity is associated 
with non‑small cell lung cancer patient survival

SIPENG SHEN1,2*,  YONGYUE WEI1*,  RUYANG ZHANG1,  MULONG DU1,  WEIWEI DUAN1,  
SHENG YANG1,  YANG ZHAO1,  DAVID C. CHRISTIANI2  and  FENG CHEN1,3

1Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 
Jiangsu 211136, P.R. China;  2Department of Environmental Health, Harvard School of Public Health, 

Boston, MA 02115, USA;  3Ministry of Education Key Laboratory for Modern Toxicology, School 
of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China

Received June 9, 2017;  Accepted September 22, 2017

DOI: 10.3892/ol.2017.7428

Correspondence to: Dr Feng Chen, Department of Biostatistics, 
School of Public Health, Nanjing Medical University, 101 Longmian 
Avenue, Nanjing, Jiangsu 211136, P.R. China
E‑mail: fengchen@njmu.edu.cn

*Contributed equally

Abbreviations: EMAF, entropy‑based mutation allele fraction; 
HR, hazard ratio; HNSC, head and neck squamous cell carcinoma; 
LUAD, lung adenocarcinoma; LUSC, lung squamous cell 
carcinoma; MAF, mutant‑allele fraction; MATH, mutant‑allele 
tumor heterogeneity; NSCLC, non‑small cell lung cancer; TCGA, 
The Cancer Genome Atlas; VAF, variant allele frequency

Key words: mutant-allele fraction heterogeneity, non-small cell 
lung cancer, overall survival, information entropy



SHEN et al:  MUTATUIN HETEROGENEITY AND OVERALL SURVIVAL796

The proposed statistic successfully measures tumor hetero-
geneity and appears to be a novel prognostic biomarker for 
NSCLC.

Materials and methods

Study population. Clinical and tumor characteristic 
information and tumor-specific somatic mutation data of 
lung cancer were obtained from TCGA on June 23, 2016 
including lung adenocarcinomas (LUAD) and squamous cell 
carcinomas (LUSC). Somatic mutations were identified from 
whole exome sequencing data by the TCGA Broad Institute Team, 
and followed by standard quality control processed (21-23) and 
VarScan algorithm (24). Patients with missing follow‑up informa-
tion were excluded. Total TCGA data included 939 NSCLC cases 
with both clinical information and mutation data. We randomly 
divided them into two datasets equally: Discovery set and repli-
cation set.

MAF. To identify genomic loci that had tumor‑specific muta-
tions based on tumor-normal pairs, the number of mutant reads 
and reference allele reads at each mutant locus was obtained 
from whole exome sequencing data of tumor and adjacent 
normal tissues. MAF, also called variant allele frequency 
(VAF), was calculated as:

As reported previously, MAF was influenced by presence 
of sub-clonal mutations and copy number alterations, which 
are higher when a locus is mutated earlier in a clonal evolution 
or undergoes allele‑specific amplification (17). The patients 
usually had a number of mutant loci, leading to different MAF 
values (most of them were hundreds) within each patient. As 
well, the distribution of MAF values within each patient was 
unique and differed from the others.

Fur ther, we refer red the theory of information 
entropy to describe MAF heterogeneity from the MAF 
values. Entropy measures a quantity of uncertainty (25), and 
is originally defined by a discrete random variable (26):

In case of continuous MAF, the value was categorized into 
bins by length ∆ (∆→0). Thus, the entropy for a continuous 
variable was:

Where f(x) is the probability density function of x. We 
named it entropy-based MAF (EMAF).

To estimate it, we smoothed MAF distribution by kernel 
function θ (27), which measures ‘similarity’ between pairs 
of samples Xn and Xn. Kernel density estimation is of the 
form:

Where θ is the default step kernel [θ (x>0)=0, θ (x≤0)=1], 
|xn-xn'| represents distance between paired samples, and r is 
kernel width.

MATH method. MATH is a simple method that calculates 
the variance of MAF values. In MATH, the median absolute 
deviation (MAD) of MAF values was calculated first: MAD = 
(|xi -median(x)|). MATH was calculated as 100xMAD/median. 
Further, calculation of MAD followed with values scaled by a 
constant factor (1.4826) so that the expected MAD of a sample 
from a normal distribution equals the standard deviation (15).

Statistical analysis. Continuous variables were described as 
mean ± SD and compared by student's t-test, while categorized 
variables were summarized by frequency (n) and compared 
by Fisher's exact test. General linear model was used to 
compare EMAFs with other characteristics. Associations 
between EMAF and overall survival were evaluated by Cox 
proportional hazard models with adjustment for common 
clinical variables (age, gender, smoking status, clinical stage, 
T classification, N classification and histology type). Survival 
curves were drawn with the Kaplan-Meier method and were 
compared among subgroups using log-rank tests. C-index 
was used for evaluating overall adequacy of risk prediction 
procedures with censored survival data (28).

Statistical analyses were performed using R v.3.2.2 (The 
R Foundation). P‑values were two‑sided and P<0.05 was 
considered to indicate a statistically significant difference.

Results

Demographic and clinical characteristics. The 939 lung 
cancer cases were equally divided into the discovery set and 
replication set (Table I). The discovery set (n=469) had an 
average age of 65.82±9.72 years, ranging from 33‑86 years, 
and 111 (23.0%) individuals were followed until death. Of 
them, 80.4% had early stage disease (stage I‑II). Among 
the 470 cases in the replication set, they had an average age 
of 66.29±9.06 years, ranging from 38‑90 years, and 127 
(27.0%) individuals were followed until death. 81.0% had 
early stage disease in the replication set. The comparisons of 
baseline information in the two sets were all non‑significant 
(P>0.05).

MATH in NSCLC cases. We applied MATH method to NSCLC 
cases to determine if the method was applicable to cancers 
beyond HNSC. Using multivariable Cox regression model 
adjusted for age, gender, smoking status, histology type and 
clinical stage, MATH showed non‑significant associations with 
survival for either discovery set (HR=1.17; 95% CI: 0.80‑1.72; 
P=0.409) or replication set (HR=0.85; 95% CI: 0.51‑1.40; 
P=0.533) cases. The results may reveal MATH is not generaliz-
able in lung cancer.

MAF and EMAF profiles. We categorized the EMAF values 
into high- and low-EMAF group by the median value within 
each dataset. Kernel smoothed distributions of MAF values 
of discovery and replication cases were shown in Fig. 1B 
and C. The distributions of cases with lower EMAF scores 
tended to have a smaller uncertainty. In the discovery set, 
EMAF ranged from 1.87 to 3.02, with a mean of 2.77 and 
a median of 2.79. The relation between EMAF and clinical 
stage was not statistically significant (β=‑0.003, P=0.248). In 
the replication set, EMAF ranged from 1.94 to 3.02, with a 
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mean of 2.78 and a median of 2.81. EMAF also showed no 
relationship with the clinical stage (β=0.001, P=0.859). This 
might indicate that EMAF was independent from clinical 
stage.

EMAF and clinical outcome. Univariate Cox regression 
showed a 1.50 times higher risk of death for the high-EMAF 
group compared to the low-EMAF group in the discovery set 
(HRunadjust=1.50; 95% CI: 1.03‑2.18; P=0.035), and a 1.47 times 

in the replication set (HRunadjust=1.47; 95% CI: 1.04‑2.09; 
P=0.031). Results retained statistical significance with 
further adjustment for covariates, including age, gender, 
smoking status, clinical stage, T classification, N classifica-
tion and histology type for the discovery set (HRadjust=1.62; 
95% CI: 1.08‑2.41; P=0.018) (Fig. 2A) and replication set 
(HRadjust=1.63; 95% CI: 1.11‑2.37; P=0.011) (Fig. 2B). We did 
find a relationship between MAF heterogeneity and clinical 
outcome (overall survival) (Table II).

Table I. Demographic and clinical characteristics of lung cancer patients in The Cancer Genome Atlas.

Characteristic Discovery set (n=469) Replication set (n=470) P‑value

Median survival time (months) 45.30 41.33 0.326
Censored rate (%) 76.33 72.97 0.260
Age (year) 65.82±9.72 66.29±9.06 0.443
Gender   
  Male 268 295 0.083
  Female 201 175 
Race   0.851
  White 370 348 
  American Indian/Alaska native 1 0 
  Asian 8 8 
  Black/African American 28 31 
  Missing 62 83 
Tobacco history   0.776
  Never smoke/quit >15 y 142 146 
  Current smoker/quit <15 y 310 318 
  Missing 17 16 
Histology type   0.896
  Adenocarcinoma 231 229 
  Squamous cell carcinoma 238 241 
T classification   0.657
  T1 140 123 
  T2 251 273 
  T3 54 53 
  T4 22 20 
  Missing or not available 2 1 
N classification   0.148
  N0 309 290 
  N1 108 102 
  N2 44 61 
  N3 2 5 
  Missing or not available 6 12 
M classification   0.903
  M0 350 349 
  M1 16 14 
  Missing or not available 103 107 
Clinical stage   0.826
  I 243 236 
  II 134 130 
  III 74 84 
  IV 18 20
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Figure 2. EMAF and NSCLC patients' overall survival. Survival curves for the discovery set (A) and replication set (B) cases, which were divided into 
low‑EMAF (red) and high‑EMAF (blue) groups by the median value. Hazard ratios (HRadjust) and P‑values were estimated by Cox regression with adjustment 
for age, gender, smoking status, clinical stage, T classification, N classification and histology type l.

Figure 1. (A) Flow chart of our study design. (B and C) MAF distribution of the discovery set (A) and replication set (B) cases smoothed by kernel density 
function with a bandwidth of 0.3. Patients were divided into low‑EMAF (red) and high‑EMAF (blue) groups by the median value. Distribution of MAF values 
within each patient was represented as a smooth line in the figures.
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Subgroup analysis with histology type and clinical stage. 
Further, we explored the relationship between EMAF and 
survival with different histology type. After adjustment for 
age, gender, smoking status, clinical stage, T classification, 
N classification, EMAF showed significance in both LUAD 
(HR=1.82; 95% CI: 1.15‑2.87; P=0.010) and LUSC (HR=1.45; 
95% CI: 1.02‑2.05; P=0.039) cases (Fig. 3A and B).

A biomarker for early-stage lung cancer is more impor-
tant and urgent. Subgroup analysis among 355 early-stage 
(stage I‑II) LUAD cases showed consistent results (HR=2.11; 
95% CI: 1.15‑3.90; P=0.016) (Fig. 3C), as well as positive 
results among 388 early‑stage LUSC patients (HR=1.61; 
95% CI: 1.06‑2.43; P=0.023) (Fig. 3D). Besides, subgroup 
analyses by clinical stage (Fig. 3E and F) showed consis-
tently significant results for LUAD (P=1.24x10-7) and LUSC 
(P=0.036).

Predict performance of EMAF on 3‑year overall survival. 
Furthermore, the index of concordance (c-index) was used to 
evaluate the predict performance of EMAF on 3-year overall 
survival (Table III). Among LUAD cases, the c‑index was 
0.70 for clinical characteristics including age, gender, smoking 
status, TNM stage, T classification, and N classification, and 
was increased to 0.76 by adding on EMAF. Similarly, the 
c-index for LUSC cases was also improved from 0.58 (for 
clinical characteristics only) to 0.63 (by adding on EMAF 
score). Results were consistent among early-stage patients 
(LUAD: 0.65 to 0.73; LUSC: 0.58 to 0.64). Thus, EMAF 
appears to improve performance of prognostic prediction 
beyond clinical information.

Discussion

In this study, based on the theory that high genetic heteroge-
neity is associated with worse overall survival, we propose 
an information entropy-based score, EMAF, to evaluate 
the uncertainty of individual genome-wide mutational 
distribution patterns of tumor DNA, also described as MAF 
heterogeneity. Lung cancer patients with higher EMAF 
scores tend to have higher uncertainty of MAF distribution. 
Moreover, our study found that high EMAF scores correlate 
with poor clinical outcomes among NSCLC cases. Our 
hypothesis is that high EMAF indicates an early start and 
a high percentage of sub-clonal mutations, which make the 
tumor more aggressive (29) as well as representing a more 
disordered regulation mechanism. Both of them may have 
an adverse effect on the tumor progression and clinical 
outcome.

Mroz et al (17) reported a MATH score by MAD/median of 
mutation allele fraction distribution to describe the intratumor 
heterogeneity in HNSC data from TCGA. However, our results 
show that MATH scores failed to be applied in NSCLC data. 
A potential explanation may be that MATH used incomplete 
information of the complicated NSCLC MAF distribution, 
while EMAF scores proposed in this study consider overall 
MAF distribution comprehensively by information entropy 
and integral process.

EMAF appears to distinguish adequately NSCLC patient 
prognosis, and retains significant among early‑stage patients. 
Besides, clinical information especially clinical stage is 
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Figure 3. Subgroup analysis with histology type and clinical stage. Subgroup survival curves for 460 LUAD (A) and 479 LUSC (B) cases were analyzed. In 
addition, we also analyzed the early‑stage (stage<3) patients in (C) LUAD and (D) LUSC. Further, survival curves were plotted depicting relation of EMAF 
and clinical stage to overall survival in (E) LUAD and (F) LUSC cases.
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regarded as an efficient and common predictive factor to clinical 
outcome (30-32). Notably, EMAF provides additional distin-
guishing capability to survival in addition to clinical information. 
Thus, the combination of EMAF and clinical information could 
significantly improve the predictive performance for 3-year 
overall survival. Early-stage lung cancer patients are expected 
to have favorable clinical prognosis, although they actually have 
diverse survival outcomes (33), which may be due to timing for 
treatment after surgery (34). EMAF appears to identify a subset 
of early-stage patients with relatively poor prognosis, which may 
indicate an alternative preoperative chemotherapy or radiation 
strategy followed by surgery.

EMAF is based on next generation sequencing which will 
have a wide range of applications in the future. In addition, it 
is a quantitative measure as long as tumor and matched normal 
somatic mutations can be sequenced. Cancer consists of a quite 
large complex regulatory network, unlike some methods that 
need to select biological markers as the first step, EMAF is 
based on overall distribution of each person and is not restricted 
by a single locus. Further, due to the use of the kernel function 
estimation method, EMAF also is not restricted by distribution 
type and thus has wide applicability. Although information 
entropy with a continuous version cannot be used as a measure 
of amount of information, it can be used as a relative measure 
of uncertainty. We defined EMAF as continuous entropy of 
the patients, and it was based on distribution of MAF values 
that considered the uncertainty and ‘impurity’ of those values 
at the same time.

We acknowledge some limitations in this study. NSCLC 
is so complicated that could be affected by somatic mutation 
explored in this study as well as some other factors such as 
performance status, chemotherapy after surgery or relapse, 
which might cause bias. Besides, EMAF is limited by very 
small number of MAF values, which preclude determining 
an authentic distribution by kernel density estimation. In this 
study, one LUAD case was excluded due to the presence of 
only 2 mutant loci and EMAF was incalculable. Besides, 
EMAF is generated from sequencing data and influenced 
by sequencing depth. A low sequencing depth may result in 
an inaccurate MAF. Further, MAF heterogeneity is evalu-
ated based on the whole genomic mutations, while in which 
probably only a small fraction relates to diseases. In addition, 
mutations in non-coding regions are gradually being cognized 
which warrant investigation in future (35-38).

In conclusion, the proposed entropy‑based EMAF score 
can quantify MAF heterogeneity in NSCLC cases and is 
therefore suggested as a prognostic biomarker. In addition, 
EMAF differentiates a subgroup of early stage patents with an 
unfavorable prognosis, potentially providing clinical support 
for therapeutic decision-making.
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