24 research outputs found

    Impact of climate change using CRAFT: a case study for West Africa

    Get PDF
    The CGIAR research program on Climate Change, Agriculture and Food Security Program’s (CCAFS) Regional Agricultural Forecasting Toolbox (CRAFT) is a framework for multi-scale spatial gridded simulations using an ensemble of crop models. The toolbox facilitates studies on the potential impact of climate change on crop production for a region in addition to other capabilities such as the regional in-season yield forecasting and risk assessment. CRAFT can be used to generate and conduct multiple simulation scenarios, maps, and interactive visualizations using a crop engine that can run the crop simulation models DSSAT, APSIM, and SARRA-H, in concert with the Climate Predictability Tool (CPT) for probabilistic seasonal climate forecasts

    Modelling long term effects of cropping and managements systems on soil organic matter, C/N dynamics and crop growth

    Get PDF
    While simulation of cropping systems over a few years might reflect well the short term effects of management and cultivation, long term effects on soil properties and their consequences for crop growth and matter fluxes are not captured. Especially the effect on soil carbon sequestration/depletion is addressed by this task. Simulations of an ensemble of crop models are performed as transient runs over a period of 120 year using observed weather from three stations in Czech Republic (1961-2010) and transient long time climate change scenarios (2011-2080) from five GCM of the CMIP5 ensemble to assess the effect of different cropping and management systems on carbon sequestration, matter fluxes and crop production in an integrative way. Two cropping systems are regarded comprising two times winter wheat, silage maize, spring barley and oilseed rape. Crop rotations differ regarding their organic input from crop residues, nitrogen fertilization and implementation of catch crops. Models are applied for two soil types with different water holding capacity. Cultivation and nutrient management is adapted using management rules related to weather and soil conditions. Data of phenology and crop yield from the region of the regarded crops were provided to calibrate the models for crops of the rotations. Twelve models were calibrated in this first step. For the transient long term runs results of four models were submitted so far. Outputs are crop yields, nitrogen uptake, soil water and mineral nitrogen contents, as well as water and nitrogen fluxes to the atmosphere and groundwater. Changes in the carbon stocks and the consequences for nitrogen mineralisation, N fertilization and emissions also considered.

    The chaos in calibrating crop models

    Full text link
    Calibration, the estimation of model parameters based on fitting the model to experimental data, is among the first steps in many applications of system models and has an important impact on simulated values. Here we propose and illustrate a novel method of developing guidelines for calibration of system models. Our example is calibration of the phenology component of crop models. The approach is based on a multi-model study, where all teams are provided with the same data and asked to return simulations for the same conditions. All teams are asked to document in detail their calibration approach, including choices with respect to criteria for best parameters, choice of parameters to estimate and software. Based on an analysis of the advantages and disadvantages of the various choices, we propose calibration recommendations that cover a comprehensive list of decisions and that are based on actual practices.HighlightsWe propose a new approach to deriving calibration recommendations for system modelsApproach is based on analyzing calibration in multi-model simulation exercisesResulting recommendations are holistic and anchored in actual practiceWe apply the approach to calibration of crop models used to simulate phenologyRecommendations concern: objective function, parameters to estimate, software usedCompeting Interest StatementThe authors have declared no competing interest

    Coupling DSSAT and HYDRUS-1D for simulations of soil water dynamics in the soil-plant-atmosphere system

    No full text
    Accurate estimation of the soil water balance of the soil-plant-atmosphere system is key to determining the availability of water resources and their optimal management. Evapotranspiration and leaching are the main sinks of water from the system affecting soil water status and hence crop yield. The accuracy of soil water content and evapotranspiration simulations affects crop yield simulations as well. DSSAT is a suite of field-scale, process-based crop models to simulate crop growth and development. A “tipping bucket” water balance approach is currently used in DSSAT for soil hydrologic and water redistribution processes. By comparison, HYDRUS-1D is a hydrological model to simulate water flow in soils using numerical solutions of the Richards equation, but its approach to crop-related process modeling is rather limited. Both DSSAT and HYDRUS-1D have been widely used and tested in their separate areas of use. The objectives of our study were: (1) to couple HYDRUS-1D with DSSAT to simulate soil water dynamics, crop growth and yield, (2) to evaluate the coupled model using field experimental datasets distributed with DSSAT for different environments, and (3) to compare HYDRUS-1D simulations with those of the tipping bucket approach using the same datasets. Modularity in the software design of both DSSAT and HYDRUS-1D made it easy to couple the two models. The pairing provided the DSSAT interface an ability to use both the tipping bucket and HYDRUS-1D simulation approaches. The two approaches were evaluated in terms of their ability to estimate the soil water balance, especially soil water contents and evapotranspiration rates. Values of the d index for volumetric water contents were 0.9 and 0.8 for the original and coupled models, respectively. Comparisons of simulations for the pod mass for four soybean and four peanut treatments showed relatively high d index values for both models (0.94–0.99)

    The impact of protected areas on local livelihoods in the South Caucasus

    No full text
    Nature conservation has a long tradition in the South Caucasus, a region with very high biodiversity. Alongside century old nature reserves (NR) in Azerbaijan and Georgia, two new transboundary national parks (NP) have recently been created in Armenia and Georgia. All of these protected areas exert an influence on the local populations, which use land located inside or in proximity to these areas. To investigate the impact of protected areas on the local populations, we conducted a qualitative study close to two neighbouring, historical NRs in Georgia (Lagodekhi) and Azerbaijan (Zaqatala), and close to the two new transboundary NPs in Armenia (Lake Arpi) and in Georgia (Javakheti). We collected the opinions of the local populations, local administrations, and environmental NGOs regarding the impact of protected areas on the livelihoods of the local populations and investigated whether the local populations developed strategies for dealing with these impacts. Results show that the land use restrictions entailed by protected areas cause conflicts of interests between the goals of conservation and those of the local populations on the one hand, and competition between different local groups with regard to scarce resources such as pastures on the other hand. These land use restrictions are due to the land use regulations of the protected areas and concern the use of pastures and forests. All sorts of tourism could provide a possible solution to settle conflicts and to increase incomes
    corecore