359 research outputs found

    Numerical investigation on rules of fracture propagation during hydraulic fracturing in heterogeneous coal-rock mass

    Get PDF
    To investigate rules of fracture propagation during hydraulic fracturing in heterogeneous coal-rock mass, a new mathematical model for hydraulic fracturing with seepage-damage coupling and its numerical algorithm are proposed. The rules of coal-rock mass heterogeneity, confining pressure, beforehand hydraulic slotting, and non-symmetric pressure gradient on fracture propagation are investigated. Numerical results show the following: (1) Compared to homogeneous coal-rock mass, the fracture propagation pattern exhibits a more zig-zag characteristic and the fracture initiation pressure is reduced in heterogeneous coal-rock mass. (2) Fracture propagation during borehole fracturing is mainly controlled by confining pressure ratio, and the fracture would propagate along the path with least resistance in coal-rock mass. (3) During hydraulic fracturing with beforehand hydraulic slotting, fracture propagation pattern would become more complex with slotting length increasing; the propagation direction of fracture is primarily controlled by principal stress difference, the larger of principal stress difference, the more difficult of oriented fracturing. (4) Non-symmetric pressure gradient can reduce breakdown pressure and influence fracture propagation pattern, which provides a beneficial guide for oriented fracturing. The simulation results are consistent with the theoretical solutions and experimental observations, which is promising to guide field operation of hydraulic fracturing to improve coalbed methane extraction

    Empower Distantly Supervised Relation Extraction with Collaborative Adversarial Training

    Full text link
    With recent advances in distantly supervised (DS) relation extraction (RE), considerable attention is attracted to leverage multi-instance learning (MIL) to distill high-quality supervision from the noisy DS. Here, we go beyond label noise and identify the key bottleneck of DS-MIL to be its low data utilization: as high-quality supervision being refined by MIL, MIL abandons a large amount of training instances, which leads to a low data utilization and hinders model training from having abundant supervision. In this paper, we propose collaborative adversarial training to improve the data utilization, which coordinates virtual adversarial training (VAT) and adversarial training (AT) at different levels. Specifically, since VAT is label-free, we employ the instance-level VAT to recycle instances abandoned by MIL. Besides, we deploy AT at the bag-level to unleash the full potential of the high-quality supervision got by MIL. Our proposed method brings consistent improvements (~ 5 absolute AUC score) to the previous state of the art, which verifies the importance of the data utilization issue and the effectiveness of our method.Comment: Accepted by AAAI 202

    A Gas Analysis Method for Determining the Perchlorate Current Efficiency and Other Applications

    Get PDF
    高氯酸盐电解电流效率的化学分析过程复杂、费时.本文通过改变电解槽结构,提出一种气体分析方法,即采用氧阴极或使用一张钠离子交换膜改变电解槽结构,通过测定电解槽产气量,得到电解电流效率.与传统分析方法相比,气体分析方法既简单又方便.这种方法特别适用于实验室研究使用和评价阳极材料的电化学性能.此外,使用氧阴极代替铁阴极,可以降低电解电压和节约电能A method for determining the current efficiency by means of measuring the flow capacity of the cell gas in a perchlorate cell has been proposed. The perchlorate cell system was equipped with an oxygen cathode or a Na + ion exchange membrane. This method is simple and convenient as well as accurate in the evaluation of the perchlorate current efficiency in the perchlorate cell as compared with the traditional methods of analysis. It is useful in the investigation of electrochemical problems with high perchlorate concentration,as well as for the assessment of electrocatalytic performance of anode materials.With an oxygen cathode in place of the mild steel cathode in the perchlorate cell,the cell voltage can be reduced and the energy consumption can be lowerde.作者联系地址:中国科学院大连化学物理研究所!大连116023,中国科学院大连化学物理研究所!大连116023Author's Address: Dalian Institute of Chemical Physics,Chinese Academy of Science,Dalian 11602

    Carbon nanotube multilayered nanocomposites as multifunctional substrates for actuating neuronal differentiation and functions of neural stem cells

    Get PDF
    Carbon nanotubes (CNTs) have shown potential applications in neuroscience as growth substrates owing to their numerous unique properties. However, a key concern in the fabrication of homogeneous composites is the serious aggregation of CNTs during incorporation into the biomaterial matrix. Moreover, the regulation mechanism of CNT-based substrates on neural differentiation remains unclear. Here, a novel strategy was introduced for the construction of CNT nanocomposites via layer-by-layer assembly of negatively charged multi-walled CNTs and positively charged poly(dimethyldiallylammonium chloride). Results demonstrated that the CNT-multilayered nanocomposites provided a potent regulatory signal over neural stem cells (NSCs), including cell adhesion, viability, differentiation, neurite outgrowth, and electrophysiological maturation of NSC-derived neurons. Importantly, the dynamic molecular mechanisms in the NSC differentiation involved the integrin-mediated interactions between NSCs and CNT multilayers, thereby activating focal adhesion kinase, subsequently triggering downstream signaling events to regulate neuronal differentiation and synapse formation. This study provided insights for future applications of CNT-multilayered nanomaterials in neural fields as potent modulators of stem cell behavior

    Hsp70 and Hsp40 inhibit an inter-domain interaction necessary for transcriptional activity in the androgen receptor.

    Get PDF
    Molecular chaperones such as Hsp40 and Hsp70 hold the androgen receptor (AR) in an inactive conformation. They are released in the presence of androgens, enabling transactivation and causing the receptor to become aggregation-prone. Here we show that these molecular chaperones recognize a region of the AR N-terminal domain (NTD), including a FQNLF motif, that interacts with the AR ligand-binding domain (LBD) upon activation. This suggests that competition between molecular chaperones and the LBD for the FQNLF motif regulates AR activation. We also show that, while the free NTD oligomerizes, binding to Hsp70 increases its solubility. Stabilizing the NTD-Hsp70 interaction with small molecules reduces AR aggregation and promotes its degradation in cellular and mouse models of the neuromuscular disorder spinal bulbar muscular atrophy. These results help resolve the mechanisms by which molecular chaperones regulate the balance between AR aggregation, activation and quality control

    Laser-based defect characterization and removal process for manufacturing fused silica optic with high ultraviolet laser damage threshold

    Get PDF
    Residual processing defects during the contact processing processes greatly reduce the anti-ultraviolet (UV) laser damage performance of fused silica optics, which significantly limited development of high-energy laser systems. In this study, we demonstrate the manufacturing of fused silica optics with a high damage threshold using a CO2 laser process chain. Based on theoretical and experimental studies, the proposed uniform layer-by-layer laser ablation technique can be used to characterize the subsurface mechanical damage in three-dimensional full aperture. Longitudinal ablation resolutions ranging from nanometers to micrometers can be realized; the minimum longitudinal resolution is < 5 nm. This technique can also be used as a crack-free grinding tool to completely remove subsurface mechanical damage, and as a cleaning tool to effectively clean surface/subsurface contamination. Through effective control of defects in the entire chain, the laser-induced damage thresholds of samples fabricated by the CO2 laser process chain were 41% (0% probability) and 65.7% (100% probability) higher than those of samples fabricated using the conventional process chain. This laser-based defect characterization and removal process provides a new tool to guide optimization of the conventional finishing process and represents a new direction for fabrication of highly damage-resistant fused silica optics for high-energy laser applications

    Effects of the seedling tray overlapping for seed emergence mode on emergence characteristics and growth of rice seedlings

    Get PDF
    Seedling mode plays a crucial role in the rice production process, as it significantly affects the growth and development of seedlings. Among the various seedling modes, the seedling tray overlapping for seed emergence mode (STOSE mode) has been demonstrated to be effective in enhancing seedling quality. However, the impact of this mode on the germination and growth of seeds with varying plumpness remains uncertain. To investigate the effect of the STOSE mode on seedling emergence characteristics, growth uniformity, and nutrient uptake of seeds with varying plumpness levels, we conducted a study using super early rice Zhongzao 39 (ZZ39) as the test material. The seeds were categorized into three groups: plumped, mixed, and unplumped. The results indicated that the STOSE mode significantly improved the seedling rate for all types of seeds in comparison to the seedling tray nonoverlapping for seed emergence mode (TSR mode). Notably, the unplumped seeds exhibited the most pronounced enhancement effect. The soluble sugar content of the seeds increased significantly after 2 days of sowing under the STOSE mode, whereas the starch content exhibited a significant decrease. Furthermore, the STOSE mode outperformed the TSR mode in several aspects including seedling growth uniformity, aboveground dry matter mass, root traits, and nutrient uptake. Overall, the STOSE mode not only promoted the germination and growth of plumped and mixed seeds but also had a more pronounced impact on unplumped seeds

    Multiple organ infection and the pathogenesis of SARS

    Get PDF
    After >8,000 infections and >700 deaths worldwide, the pathogenesis of the new infectious disease, severe acute respiratory syndrome (SARS), remains poorly understood. We investigated 18 autopsies of patients who had suspected SARS; 8 cases were confirmed as SARS. We evaluated white blood cells from 22 confirmed SARS patients at various stages of the disease. T lymphocyte counts in 65 confirmed and 35 misdiagnosed SARS cases also were analyzed retrospectively. SARS viral particles and genomic sequence were detected in a large number of circulating lymphocytes, monocytes, and lymphoid tissues, as well as in the epithelial cells of the respiratory tract, the mucosa of the intestine, the epithelium of the renal distal tubules, the neurons of the brain, and macrophages in different organs. SARS virus seemed to be capable of infecting multiple cell types in several organs; immune cells and pulmonary epithelium were identified as the main sites of injury. A comprehensive theory of pathogenesis is proposed for SARS with immune and lung damage as key features
    corecore