1,571 research outputs found
On the occurrence of Uronema marinum Womersley (Chaetophorales, Chlorophyta) in the north-western lagoons of the Adriatic Sea, Mediterranean Sea (Italy)
We study the occurrence of the alien macroalga Uronema marinum in the lagoon of Venice, in the lagoons and ponds of the Po Delta and in Pialassa della Baiona in Emilia-Romagna. It was in summer 2012 that U. marinum was identified for the first time, even though it has been present at least since 2008. This species, originally described from South Australia and Western Australia and probably imported with the Manila clam Tapes philippinarum, is prevalently associated with thalli of another introduced species, Agardhiella subulata, and the invasive Gracilaria vermiculophylla, which also have a Pacific origin and have recently colonized the same lagoon areas. Uronema marinum is currently widespread in the whole lagoon surfaces, but is particularly abundant in stagnant waters, rich in nutrients, where Gracilariaceae and Solieriaceae prevail on Ulvaceae
Aquatic Angiosperm Transplantation: A Tool for Environmental Management and Restoring in Transitional Water Systems
Since the 1960s, the Venice Lagoon has suffered a sharp aquatic plant constriction due to eutrophication, pollution, and clam fishing. Those anthropogenic impacts began to decline during the 2010s, and since then the ecological status of the lagoon has improved, but in many choked areas no plant recolonization has been recorded due to the lack of seeds. The project funded by the European Union (LIFE12 NAT/IT/000331-SeResto) allowed to recolonize one of these areas, which is situated in the northern lagoon, by widespread transplantation of small sods and individual rhizomes. In-field activities were supported by fishermen, hunters, and sport associations; the interested surface measured approximately 36.6 km2. In the 35 stations of the chosen area, 24,261 rhizomes were transplanted during the first year, accounting for 693 rhizomes per station. About 37% of them took root in 31 stations forming several patches that joined together to form extensive meadows. Plant rooting was successful where the waters were clear and the trophic status low. But, near the outflows of freshwater rich in nutrients and suspended particulate matter, the action failed. Results demonstrate the effectiveness of small, widespread interventions and the importance of engaging
the population in the recovery of the environment, which makes the action economically cheap and replicable in other similar environments
Closure to discussion of “Procedure for assessing the liquefaction vulnerability of tailings dams” by Ledesma, O, Sfriso, A, and Manzanal, D
The authors thank the discussers for their comments (Reid et al., 2023), which are mostly related to addressing key uncertainties when completing the analysis proposed by the authors in their work (Ledesma et al., 2022), and to the response of the Modified Pastor-Zienkiewicz (MPZ) constitutive model (Manzanal et al., 2011) employed in the same work.The authors believe that recognizing and dealing with uncertainties, such as the ones highlighted by the discussers, will provide additional insights for assessing the liquefaction vulnerability of tailings dam systems (Ledesma et al., 2022) using readily available deformation modelling tools.The authors would also like to highlight that the proposed procedure for assessing liquefaction vulnerability is not a triggering analysis. The proposed actions are not intended to be relevant or realistic for a given dam. However, they should be understood as numerical excursions around a stable configuration to check the stability of such equilibrium. Also, the proposed procedure could be completed using constitutive models other than MPZ. However, there are some key characteristics that the selected constitutive model should have and are described in more detail in Ledesma et al. (2022).Fil: Ledesma, Osvaldo Nicolas. Universidad de Buenos Aires. Facultad de IngenierĂa; ArgentinaFil: Sfriso, Alejo Oscar Sfriso. Universidad de Buenos Aires. Facultad de IngenierĂa; Argentina. SRK Consulting; ArgentinaFil: Manzanal, Diego. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de TecnologĂas y Ciencias de la IngenierĂa "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de IngenierĂa. Instituto de TecnologĂas y Ciencias de la IngenierĂa "Hilario Fernández Long"; Argentina. Universidad PolitĂ©cnica de Madrid; Españ
Development and Role in Therapy of Canakinumab in Adult-Onset Still's Disease
Adult-onset Still's disease (AOSD) is a rare inflammatory disease of unknown etiology typically characterized by episodes of spiking fever, evanescent rash, arthralgia, leukocytosis, and hyperferritinemia. The pivotal role of interleukin (IL)-1 and other pro-inflammatory cytokines gives rise to the development of new targeted therapies. Currently, AOSD patients can benefit from efficient and well tolerated biologic agents, such as IL-1, IL-6, and tumour necrosis factor (TNF)-\u3b1 antagonists. Canakinumab, a human monoclonal anti-IL-1\u3b2 antibody, is indicated for the treatment of different autoinflammatory syndromes in adults, adolescents, and children and it has recently been approved for AOSD treatment. In this article, we summarize the structural and biochemical data describing the molecular interactions between Canakinumab and its target antigen. Some special considerations of the pharmacological properties of Canakinumab are included. We also review the safety, efficacy and tolerability of this drug for the treatment of AOSD
Alien Macroalgal Rearrangement in the Soft Substrata of the Venice Lagoon (Italy): Impacts, Threats, Time and Future Trends
Non-native species are a concern for aquatic environments both for the ecosystem biodiversity and from the economical point of view. The Venice Lagoon is a Mediterranean hotspot of alien introductions and macroalgae are probably the most represented systematic category. For this reason, alien macroalgal distribution and variation were monitored in late spring-autumn surveys, carried out in 2011, 2014, 2018 and 2021 in the soft bottoms of the entire lagoon (87 common stations). Overall, 21 taxa were recorded; three of them (i.e., Acanthosiphonia echinata, Caulacanthus okamurae, Osmundea oederi) are well-established recent introductions for the lagoon, which has increased the total number of non-native species to 33. Ulva australis, previously reported as Ulva laetevirens, is the most abundant species and it is replacing Ulva rigida, especially in the less eutrophic areas. The invasive Gracilariopsis vermiculophylla, an engineering species colonizing the eutrophic choked areas especially in the central lagoon, is instead decreasing. Other abundant established taxa are now dominant components of the lagoon biomass, whereas many others are rare or have small sizes that make their biomass negligible. Overall, these species do not represent serious threats to the environment, but they rather increase biodiversity, with some of them having positive effects on ecosystem services
Management and Exploitation of Macroalgal Biomass as a Tool for the Recovery of Transitional Water Systems
Aquatic angiosperms favor the development of ecosystems services, the welfare of marine organisms and people. Generally, the presence of angiosperms in transitional water systems (TWS) are indicators of good ecosystem status. Presently, these environments are densely populated and often are so highly degraded that angiosperms have almost disappeared, replaced by tionitrophilic macroalgae responsible of anoxic events that deteriorate the environment furtherly. Although this trend is hardly reversible because the anthropogenic impact is increasing and the restoring of damaged environments within a reasonable time is difficult, recent studies have shown that by managing the harvesting of the natural algal species of commercial interest a progressive environmental recovery is achievable. Biomass-harvesting can contribute both to the removal of high amounts of nutrients and the generation of economic revenues for a sustainable, self-financed environmental restoration. In fact, unlike clam-farming which destroys the seabed and re-suspends large amounts of sediments, the proper management of the macroalgal biomass, can favor the nutrient abatement and the recolonization of aquatic angiosperms which help restore the conditions necessary for the conservation of the benthic and fish fauna and birds, and produce valuable economic resources
Benthic studies in LTER sites: the use of taxonomy surrogates in the detection of long-term changes in lagoonal benthic assemblages
In benthic studies, the identification of organisms at the species level is known to be the best source for ecological and biological information even if time-consuming and expensive. However, taxonomic sufficiency (TS) has been proposed as a short-cut method for quantifying changes in biological assemblages in environmental monitoring. In this paper, we set out to determine whether and how the taxonomic complexity of a benthic assemblage influences the results of TS at two different long-term ecological research (LTER) sites in the Po delta region (north-eastern Italy). Specifically, we investigated whether TS can be used to detect natural and human-driven patterns of variation in benthic assemblages from
lagoonal soft bottoms. The first benthic dataset was collected from 1996 to 2015 in a “choked” lagoon, the Valli di Comacchio, a lagoon characterised by long water residence times and heavy eutrophication, while the second was collected from 2004 to 2010 in a “leaky” lagoon, the Sacca di Goro, a coastal area with human pressure limited to aquaculture. Univariate and multivariate statistical analyses were used to
assess differences in the taxonomic structure of benthic assemblages and to test TS on the two different datasets. TS seemed to work from species to family level at both sites, despite a higher natural variability of environmental conditions combined with multiple anthropogenic stressors. Therefore, TS at the family level may represent effective taxonomic surrogates across a range of environmental contexts in lagoon environments. Since the structure of the community and the magnitude of changes could influence the efficiency of taxonomic surrogates and data transformations in long-term monitoring, we also suggest periodic analyses at finer taxonomic levels in order to check the efficiency of the application of taxonomic
substitutes in routine monitoring programmes in lagoon systems
Assess the environmental health status of macrophyte ecosystems using an oxidative stress biomarker. Case studies: The Gulf of Aqaba and the Lagoon of Venice
Abstract The aim of this work was to evaluate the implementation of the oxidative stress biomarker (LPO) for the assessment and monitoring of the ecological status of macrophyte in relation to potentially toxic elements (PTEs) in the Gulf of Aqaba (Jordan) and the Lagoon of Venice (Italy). Results showed that the anthropic influences related to PTEs of the examined areas are evident. Moreover, changes in the LPO levels can precede significant changes in ecological health status of macrophyte ecosystems that can be used in the future as an early warning tool for the assessment and monitoring of polluted ecosystems worldwide
Management and Exploitation of Macroalgal Biomass as a Tool for the Recovery of Transitional Water Systems
Aquatic angiosperms favor the development of ecosystems services, the welfare of marine organisms and people. Generally, the presence of angiosperms in transitional water systems (TWS) are indicators of good ecosystem status. Presently, these environments are densely populated and often are so highly degraded that angiosperms have almost disappeared, replaced by tionitrophilic macroalgae responsible of anoxic events that deteriorate the environment furtherly. Although this trend is hardly reversible because the anthropogenic impact is increasing and the restoring of damaged environments within a reasonable time is difficult, recent studies have shown that by managing the harvesting of the natural algal species of commercial interest a progressive environmental recovery is achievable. Biomass-harvesting can contribute both to the removal of high amounts of nutrients and the generation of economic revenues for a sustainable, self-financed environmental restoration. In fact, unlike clam-farming which destroys the seabed and re-suspends large amounts of sediments, the proper management of the macroalgal biomass, can favor the nutrient abatement and the recolonization of aquatic angiosperms which help restore the conditions necessary for the conservation of the benthic and fish fauna and birds, and produce valuable economic resources
Long-term changes of the trophic status in transitional ecosystems of the northern Adriatic Sea, key parameters and future expectations: The lagoon of Venice as a study case.
The determination of the trophic status of transitional ecosystems from the physico-chemical and biological point of view is one of the requirements of the European Water Framework Directive (WFD 2000/60/EC). In Italy, its determination is implemented by the Regional Agencies for Environmental Protection (ARPAs) that have activated multi-annual monitoring programs. However, as the availability of funds is increasingly scarce,
the number of environmental parameters to detect environmental changes should be conveniently managed. The high number of environmental parameters, nutrient and macrophyte datasets available for the LTER-Italia site “Venice lagoon” can be an useful tool to analyze the trophic changes over recent years and to foresee environmental evolutions. Nutrient data on a spatial basis have been available since 1948, whereas macroalgal maps date back to 1980. The aim of this paper is to highlight the changes of the trophic status of the lagoon since the middle of the 20th century by considering the concentrations of nutrients in the surface sediments and in the water column, the variation of some physico-chemical parameters
and the biomass of macroalgae and also to foresee the way it will possibly evolve. In fact, after many anthropogenic impacts that in the second half of the 20th century affected the lagoon, starting fromthe year 2010, the ecological status is progressively improving. Nutrients show a significant reduction both in the water column and in surface sediments, and the macrophytes are represented by species of higher ecological value while the opportunistic species such as the Ulvaceae are in strong regression
- …