10 research outputs found

    Identification of an interferon-stimulated gene, isg15, involved in host immune defense against viral infections in gilthead seabream (Sparus aurata L.)

    Get PDF
    Interferons (IFNs) play a key role in the innate immunity of vertebrates against viral infections by inducing hundreds of IFN-stimulated genes (ISGs), such as isg15. Isg15 is an ubiquitin-like protein, which can conjugate cellular and viral proteins in a process called ISGylation, although it can also act as a cytokine-like protein. Gilthead seabream (Sparus aurata L.) is an important asymptomatic carrier of viral haemorrhagic septicaemia virus (VHSV) and nodavirus, representing a threat to other co-cultivated susceptible species. In order to better understand virus-host interactions in this fish species, this study addresses the identification and molecular characterization of seabream isg15 (sb-isg15). In addition, the modulation of transcript levels of sb-isg15 was analysed in SAF-1 cells and seabream acidophilic granulocytes (AGs) stimulated in vitro with different pathogenassociated molecular patterns (PAMPs) or inoculated with VHSV and striped jack nervous necrosis virus (SJNNV). The full-length cDNA of sb-isg15 gene, encoding a predicted protein of 155 amino acids, was identified and seen to share the same characteristics as other fish and mammalian isg15 genes. Here we report the clear induction of sb-isg15 transcript levels in SAF-1 cells and AGs stimulated with toll-like receptor (TLR) ligands, such as polyinosinic:polycytidylic acid (poly I:C) or genomic DNA from Vibrio anguillarum (VaDNA), respectively. Furthermore, VHSV and SJNNV inoculation induced a significant degree of sb-isg15 transcription in SAF-1 cells and AGs. However, the relative levels of viral RNA transcription showed that SJNNV replication seems to be more efficient than VHSV in both in vitro systems. Interestingly, sb-isg15 transcript induction elicited by VaDNA was reduced in VHSV- and SJNNV-inoculated AGs, suggesting an interference prompted by the viruses against the type I IFN system. Taken together, these findings support the use of seabream AGs as a valuable experimental system to study virus-host interactions, in which sb-isg15 seems to play an important role.Versión del edito

    Use of recombinant cytokines to prevent infectious diseases in aquaculture: Reality or fiction?

    Get PDF
    The present paper reports on a study in which we cloned the IL-1βgene of the gilthead seabream Sparus auratus Linnaeus, 1758, and produced the corresponding recombinant protein, in order to assess its usefulness as an immunostimulant and vaccine adjuvant in aquaculture.En el presente estudio se ha clonado el gen de la IL-1β de dorada Sparus auratus Linnaeus, 1758, y se ha producido la correspondiente proteína recombinante para evaluar su uso como inmunoestimulante y adyuvante en peces objeto de cultivo industrial.Instituto Español de Oceanografí

    Tnfa Signaling Through Tnfr2 Protects Skin Against Oxidative Stress-Induced Inflammation

    Get PDF
    TNFα overexpression has been associated with several chronic inflammatory diseases, including psoriasis, lichen planus, rheumatoid arthritis, and inflammatory bowel disease. Paradoxically, numerous studies have reported new-onset psoriasis and lichen planus following TNFα antagonist therapy. Here, we show that genetic inhibition of Tnfa and Tnfr2 in zebrafish results in the mobilization of neutrophils to the skin. Using combinations of fluorescent reporter transgenes, fluorescence microscopy, and flow cytometry, we identified the local production of dual oxidase 1 (Duox1)-derived H2O2 by Tnfa- and Tnfr2-deficient keratinocytes as a trigger for the activation of the master inflammation transcription factor NF-κB, which then promotes the induction of genes encoding pro-inflammatory molecules. In addition, pharmacological inhibition of Duox1 completely abrogated skin inflammation, placing Duox1-derived H2O2 upstream of this positive feedback inflammatory loop. Strikingly, DUOX1 was drastically induced in the skin lesions of psoriasis and lichen planus patients. These results reveal a crucial role for TNFα/TNFR2 axis in the protection of the skin against DUOX1-mediated oxidative stress and could establish new therapeutic targets for skin inflammatory disorders

    Prostaglandin E2 promotes M2 polarization of macrophages via a cAMP/CREB signaling pathway and deactivates granulocytes in teleost fish

    No full text
    The profile of prostaglandin (PG) production is determined by the differential expression of the enzymes involved in their production and degradation. Although the production of PGE2 by fish leukocytes has been relatively well studied in several fish species, knowledge of how its production is regulated, its biological activities and the signaling pathways activated by this PG is scant or even contradictory. In this work we show that in the teleost fish gilthead seabream (Sparus aurata L.) macrophages regulate PGE2 release mainly by inducing the expression of the genes encoding the enzymes responsible for its synthesis, while acidophilic granulocytes (AGs) not only induce these genes quickly after activation but also inhibit the expression of the genes encoding the enzymes responsible for PGE2 degradation at later time points. In addition, treatment of macrophages with PGE2 promoted their M2 polarization, which is characterized by high expression levels of interleukin-10, mannose-receptor c-type 1 and arginase 2 genes. In sharp contrast, PGE2 promoted the deactivation of AGs, since it decreased the production of reactive oxygen species and the expression of genes encoding pro-inflammatory cytokines. These differences are the result of the alternative signaling pathways used by PGE2 in macrophages and AGs, a cAMP/CREB signaling pathway operating in macrophages, but not in AGs, downstream of PGE2. Our data identify for the first time a role for professional phagocyte-derived-PGE2 in the resolution of inflammation in fish and highlight key differences in the PGE2 signaling pathway in macrophages and granulocytes.Versión del edito

    Bio-engineering insulin-secreting cells from embryonic stem cells: A review of progress

    No full text
    Medical and Biological Engineering and Computing414384-391MBEC

    Professional phagocytic granulocyte-derived PGD2 regulates the resolution of inflammation in fish

    Get PDF
    Prostaglandins (PGs) play a key role in the development on the immune response through the regulation of both pro- and anti-inflammatory processes. PGD2 can be either pro- or anti-inflammatory depending on the inflammatory milieu. Prostaglandin D synthase (PGDS) is the enzyme responsible for the conversion of PGH2 to PGD2. In mammals, two types of PGDS synthase have been described, the hematopoietic (H-PGDS) and the lipocalin (L-PGDS). In the present study we describe the existence of two orthologs of the mammalian L-PGDS (PGDS1 and PGDS2) in the gilthead seabream and characterize their gene expression profiles and biological activity. The results showed a dramatic induction of the gene coding for PGDS1 in acidophilic granulocytes (AGs), which are functionally equivalent to mammalian neutrophils, after a prolonged in vitro activation with different pathogen associated molecular patterns (PAMPs). In contrast PGDS2 was not expressed in these cells. The functional relevance of the induction of PGDS1 in AGs was confirmed by the ability of these cells to release PGD2 upon PAMP stimulation. To gain further insight into the role of PGD2 in the resolution of inflammation in fish, we examined the ability of PGD2 or its cyclopentenone derivates (cyPGs) to modulate the main functional activities of AGs. It was found that both PGD2 and cyPGs inhibited the production of reactive oxygen species and downregulated the transcript levels of the gene encoding interleukin-1β. Taken together, these results demonstrate that the use of PGD2 and its metabolites in the resolution of inflammation was established before the divergence of fish from tetrapods more than 450 million years ago and support a critical role for granulocytes in the resolution of inflammation in vertebrates.Versión del editor3,268

    Peroxisome proliferator-activated receptors alpha and beta mediate the anti-inflammatory effects of the cyclopentenone prostaglandin 15-deoxy-Δ12,14-PGJ2 in fish granulocytes

    No full text
    Prostaglandins (PGs) are highly reactive small lipophilic molecules derived from polyunsaturated fatty acids of the cell membrane and play a key role in the resolution of inflammation processes. 15-deoxy-Δ12,14-PGJ2 (15dPGJ2) is a cyclopentenone PG (CyPG) of the J series with anti-inflammatory, anti-proliferative and proapoptotic effects. This CyPG can signal through: (i) the PGD2 receptor (DP2) and peroxisome proliferatoractivated receptor γ (PPARγ) or (ii) by covalent binding to protein nucleophiles, such as, thiols groups of cysteine, lysine or histidine via a Michael addition reaction, modifying its structure and function. In this work we show that acidophilic granulocytes (AGs) of gilthead seabream (Sparus aurata L.), the functional equivalent to mammalian neutrophils, constitutively expressed ppara, pparb and pparg genes, the latter showing the highest expression and up-regulation when stimulated by bacterial DNA. In addition, we tested the ability of 15dPGJ2, and its biotinylated analog, as well as several PPARγ ligands, to modulate reactive oxygen species (ROS) and/or cytokines production during a Toll like receptor (TLR)-mediated granulocyte response. Thus, 15dPGJ2 was able to significantly decrease bacterial DNA-induced ROS production and transcript levels of pparg, interleukin-1β (il1b) and prostaglandin-endoperoxide synthase 2 (ptgs2). In contrast, its biotinylated analog was less potent and a higher dose was required to elicit the same effects on ROS production and cytokine expression. In addition, different PPARγ agonists were able to mimic the effects of 15dPGJ2. Conversely, the PPARγ antagonist T007097 abolished the effect of 15dPGJ2 on DNA bacterial-induced ROS production. Surprisingly, transactivation assays revealed that both 15dPGJ2 and its biotinylated analog signaled via Pparα and Pparβ, but not by Pparγ. These results were further confirmed by HPLC/MS analysis, where Pparβ was identified as an interactor of biotin- 15dPGJ2 in naïve and DNA-stimulated leukocytes. Taken together, our data show that 15dPGJ2 acts both through Ppar activation and covalent binding to proteins in fish granulocytes and identify for the first time in vertebrates a role for Pparα and Pparβ in the resolution of inflammation mediated by 15dPGJ2.Versión del editor3,26
    corecore