7 research outputs found

    Tying the Liis: The Connection of the Haida to Ancestral Belongings in Museums

    Get PDF
    In Haida culture, we have a concept of  an invisible liis (string). It ties us to our mothers and all the mothers before her. It also ties us to Haida Gwaii. I believe there is a liis connecting us to our Ancestors’ 12,000 belongings in museums. My research goal is to strengthen the liis connecting us to our Haida belongings. I aim to tell the story of Haida museology, to support the Haida control and return of Haida belongings; and to show the Haida way of bringing reconciliation to the heritage sector. I will combine my traditional practice with my academic learning. My research is situated in yahgudang (respect) ḵangang (responsibility) yahk’ii (to tell the truth) and tla yahda (to make things right). I use a blended theoretical and action-based approach, including grounded theory, auto-ethnography, and participatory action, to conduct qualitative community-based interviews, literature review, and archival research in a Haida way. The Haida community not only guides my research but is actively involved in my research journey. It is important to me that they feel involved and see and hear themselves in my research. I call upon Jaad ahl K’iiganaa (Story Woman) to bring stories and experiences to life in my dissertation. I aim for my research to be meaningful and accessible for the Haida and Indigenous communities and for academic and museum audiences. I honour the Haida community and our Kuniisii (Ancestors) by telling our story

    CAGD - Computer Aided Gripper Design for a Flexible Gripping System

    Full text link
    This paper is a summary of the recently accomplished research work on flexible gripping systems. The goal is to develop a gripper which can be used for a great amount of geometrically variant workpieces. The economic aspect is of particular importance during the whole development. The high flexibility of the gripper is obtained by three parallel used principles. These are human and computer based analysis of the gripping object as well as mechanical adaptation of the gripper to the object with the help of servo motors. The focus is on the gripping of free-form surfaces with suction cup

    Review. Technologies for robot grippers in pick and place operations for fresh fruits and vegetables

    Get PDF
    [EN] Robotics has been introduced in industry to replace humans in arduous and repetitive tasks, to reduce labour costs and to ensure consistent quality control of the process. Nowadays robots are cheaper, can work in hostile and dirty environments and they are able to manipulate products at high speed. High speed and reliability and low robot gripper costs are necessary for a profitable pick and place (P&P) process. However, current grippers are not able to handle these products properly because they have uneven shapes, are flexible and irregular, have different textures and are very sensitive to being damaged. This review brings together the requirements and phases used in the process of manipulation, summarises and analyses of the existing, potential and emerging techniques and their possibilities for the manipulation of fresh horticultural products from a detailed study of their characteristics. It considers the difficulties and the lack of engineers to conceive of and implement solutions. Contact grippers with underactuated mechanism and suction cups could be a promising approach for the manipulation of fresh fruit and vegetables. Ongoing study is still necessary on the characteristics and handling requirements of fresh fruit and vegetables in order to design grippers which are suitable for correct manipulation, at high speed, in profitable P&P processes for industrial applications.This work has been partially funded by research project with reference DPI2010-20286 financed by the Spanish Ministerio de Ciencia e Innovacion.Blanes Campos, C.; Mellado Arteche, M.; Ortiz Sánchez, MC.; Valera Fernández, Á. (2011). Review. Technologies for robot grippers in pick and place operations for fresh fruits and vegetables. SPANISH JOURNAL OF AGRICULTURAL RESEARCH. REVISTA DE INVESTIGACION AGRARIA. 9(4):1130-1141. https://doi.org/10.5424/sjar/20110904-501-10S1130114194Akella, S., & Mason, M. T. (1999). Using Partial Sensor Information to Orient Parts. The International Journal of Robotics Research, 18(10), 963-997. doi:10.1177/02783649922067663Akella, S., Huang, W. H., Lynch, K. M., & Mason, M. T. (s. f.). Sensorless parts orienting with a one-joint manipulator. Proceedings of International Conference on Robotics and Automation. doi:10.1109/robot.1997.619318Allende, A., Desmet, M., Vanstreels, E., Verlinden, B. E., & Nicolaı̈, B. M. (2004). Micromechanical and geometrical properties of tomato skin related to differences in puncture injury susceptibility. Postharvest Biology and Technology, 34(2), 131-141. doi:10.1016/j.postharvbio.2004.05.007R. W. Bajema, G. M. Hyde, & A. L. Baritelle. (1998). TEMPERATURE AND STRAIN RATE EFFECTS ON THE DYNAMIC FAILURE PROPERTIES OF POTATO TUBER TISSUE. Transactions of the ASAE, 41(3), 733-740. doi:10.13031/2013.17201Barreiro, P., Steinmetz, V., & Ruiz-Altisent, M. (1997). Neural bruise prediction models for fruit handling and machinery evaluation. Computers and Electronics in Agriculture, 18(2-3), 91-103. doi:10.1016/s0168-1699(97)00022-7Bicchi, A. (2000). Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Transactions on Robotics and Automation, 16(6), 652-662. doi:10.1109/70.897777Bielza, C., Barreiro, P., Rodrı́guez-Galiano, M. I., & Martı́n, J. (2003). Logistic regression for simulating damage occurrence on a fruit grading line. Computers and Electronics in Agriculture, 39(2), 95-113. doi:10.1016/s0168-1699(03)00021-8Bloss, R. (2006). How do you quickly load cases and trays with tough to handle product? Industrial Robot: An International Journal, 33(5), 339-341. doi:10.1108/01439910610684990Brantmark, H., & Hemmingson, E. (2001). FlexPicker with PickMaster revolutionizes picking operations. Industrial Robot: An International Journal, 28(5), 414-420. doi:10.1108/eum0000000005844Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M. R., … Jaeger, H. M. (2010). Universal robotic gripper based on the jamming of granular material. Proceedings of the National Academy of Sciences, 107(44), 18809-18814. doi:10.1073/pnas.1003250107G. H. Brusewitz, & J. A. Bartsch. (1989). Impact Parameters Related to Post Harvest Bruising of Apples. Transactions of the ASAE, 32(3), 0953. doi:10.13031/2013.31097Ceccarelli, M., Figliolini, G., Ottaviano, E., Mata, A. S., & Criado, E. J. (2000). Designing a robotic gripper for harvesting horticulture products. Robotica, 18(1), 105-111. doi:10.1017/s026357479900226xChen, P., & Sun, Z. (1991). A review of non-destructive methods for quality evaluation and sorting of agricultural products. Journal of Agricultural Engineering Research, 49, 85-98. doi:10.1016/0021-8634(91)80030-iChua, P. Y., Ilschner, T., & Caldwell, D. G. (2003). Robotic manipulation of food products – a review. Industrial Robot: An International Journal, 30(4), 345-354. doi:10.1108/01439910310479612Davis, S., Gray, J. O., & Caldwell, D. G. (2008). An end effector based on the Bernoulli principle for handling sliced fruit and vegetables. Robotics and Computer-Integrated Manufacturing, 24(2), 249-257. doi:10.1016/j.rcim.2006.11.002Erzincanli, F., & Sharp, J. M. (1997). A classification system for robotic food handling. Food Control, 8(4), 191-197. doi:10.1016/s0956-7135(97)00048-0R. Feller, E. Margolin, A. Zacharin, & H. Pasternak. (1985). Development of a Clod Separator for Potato Packing Houses. Transactions of the ASAE, 28(4), 1019-1023. doi:10.13031/2013.32380Fischer, I. H., Ferreira, M. D., Spósito, M. B., & Amorim, L. (2009). Citrus postharvest diseases and injuries related to impact on packing lines. Scientia Agricola, 66(2), 210-217. doi:10.1590/s0103-90162009000200010Foglia, M. M., & Reina, G. (2006). Agricultural robot for radicchio harvesting. Journal of Field Robotics, 23(6-7), 363-377. doi:10.1002/rob.20131Garcı́a, J. L., Ruiz-Altisent, M., & Barreiro, P. (1995). Factors Influencing Mechanical Properties and Bruise Susceptibility of Apples and Pears. Journal of Agricultural Engineering Research, 61(1), 11-17. doi:10.1006/jaer.1995.1025Garcı́a-Ramos, F. ., Ortiz-Cañavate, J., & Ruiz-Altisent, M. (2004). Evaluation and correction of the mechanical aggressiveness of commercial sizers used in stone fruit packing lines. Journal of Food Engineering, 63(2), 171-176. doi:10.1016/s0260-8774(03)00297-8Grunert, K. G. (2005). Food quality and safety: consumer perception and demand. European Review of Agricultural Economics, 32(3), 369-391. doi:10.1093/eurrag/jbi011Han, I. (2007). Vibratory orienting and separation of small polygonal parts. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(12), 1743-1753. doi:10.1243/09544054jem846HAYASHI, S., GANNO, K., ISHII, Y., & TANAKA, I. (2002). Robotic Harvesting System for Eggplants. Japan Agricultural Research Quarterly: JARQ, 36(3), 163-168. doi:10.6090/jarq.36.163Hayashi, S., Shigematsu, K., Yamamoto, S., Kobayashi, K., Kohno, Y., Kamata, J., & Kurita, M. (2010). Evaluation of a strawberry-harvesting robot in a field test. Biosystems Engineering, 105(2), 160-171. doi:10.1016/j.biosystemseng.2009.09.011Herold, B., Truppel, I., Siering, G., & Geyer, M. (1996). A Pressure Measuring Sphere for monitoring handling of fruit and vegetables. Computers and Electronics in Agriculture, 15(1), 73-88. doi:10.1016/0168-1699(96)00004-xHirose, S., & Umetani, Y. (1978). The development of soft gripper for the versatile robot hand. Mechanism and Machine Theory, 13(3), 351-359. doi:10.1016/0094-114x(78)90059-9Kondo, N. (2010). Automation on fruit and vegetable grading system and food traceability. Trends in Food Science & Technology, 21(3), 145-152. doi:10.1016/j.tifs.2009.09.002Lewis, R., Yoxall, A., Marshall, M. B., & Canty, L. A. (2008). Characterising pressure and bruising in apple fruit. Wear, 264(1-2), 37-46. doi:10.1016/j.wear.2007.01.038M. J. Lichtensteiger, R. G. Holmes, M. Y. Hamdy, & J. L. Blaisdell. (1988). Evaluation of Kelvin Model Coefficients for Viscoelastic Spheres. Transactions of the ASAE, 31(1), 0288-0292. doi:10.13031/2013.30702Alejandro Isabel Luna Maldonado. (2010). Automation and robots for handling, storing and transporting fresh horticulture produce. Stewart Postharvest Review, 6(3), 1-6. doi:10.2212/spr.2010.3.14Mantriota, G. (2007). Theoretical model of the grasp with vacuum gripper. Mechanism and Machine Theory, 42(1), 2-17. doi:10.1016/j.mechmachtheory.2006.03.003Mantriota, G. (2007). Optimal grasp of vacuum grippers with multiple suction cups. Mechanism and Machine Theory, 42(1), 18-33. doi:10.1016/j.mechmachtheory.2006.02.007Menesatti, P., & Paglia, G. (2001). PH—Postharvest Technology. Journal of Agricultural Engineering Research, 80(1), 53-64. doi:10.1006/jaer.2000.0669Monta, M., Kondo, N., & Ting, K. C. (1998). Artificial Intelligence Review, 12(1/3), 11-25. doi:10.1023/a:1006595416751MORROW, C. T., & MOHSENIN, N. N. (1968). Dynamic Viscoelastic Characterization of Solid Food Materials. Journal of Food Science, 33(6), 646-651. doi:10.1111/j.1365-2621.1968.tb09093.xMuscato, G., Prestifilippo, M., Abbate, N., & Rizzuto, I. (2005). A prototype of an orange picking robot: past history, the new robot and experimental results. Industrial Robot: An International Journal, 32(2), 128-138. doi:10.1108/01439910510582255PELEG, M., & CALZADA, J. F. (1976). STRESS RELAXATION OF DEFORMED FRUITS AND VEGETABLES. Journal of Food Science, 41(6), 1325-1329. doi:10.1111/j.1365-2621.1976.tb01163.xPeterson, C. L., & Hall, C. W. (1975). Dynamic mechanical properties of the Russet Burbank potato as related to temperature and bruise susceptibility. American Potato Journal, 52(10), 289-312. doi:10.1007/bf02874443Petterson, A., Ohlsson, T., Caldwell, D. G., Davis, S., Gray, J. O., & Dodd, T. J. (2010). A Bernoulli principle gripper for handling of planar and 3D (food) products. Industrial Robot: An International Journal, 37(6), 518-526. doi:10.1108/01439911011081669Pettersson, A., Davis, S., Gray, J. O., Dodd, T. J., & Ohlsson, T. (2010). Design of a magnetorheological robot gripper for handling of delicate food products with varying shapes. Journal of Food Engineering, 98(3), 332-338. doi:10.1016/j.jfoodeng.2009.11.020Ruiz-Altisent, M., Ruiz-Garcia, L., Moreda, G. P., Lu, R., Hernandez-Sanchez, N., Correa, E. C., … García-Ramos, J. (2010). Sensors for product characterization and quality of specialty crops—A review. Computers and Electronics in Agriculture, 74(2), 176-194. doi:10.1016/j.compag.2010.07.002Saadat, M., & Nan, P. (2002). Industrial applications of automatic manipulation of flexible materials. Industrial Robot: An International Journal, 29(5), 434-442. doi:10.1108/01439910210440255Sarig, Y. (1993). Robotics of Fruit Harvesting: A State-of-the-art Review. Journal of Agricultural Engineering Research, 54(4), 265-280. doi:10.1006/jaer.1993.1020Sharma, M. G., & Mohsenin, N. N. (1970). Mechanics of deformation of a fruit subjected to hydrostatic pressure. Journal of Agricultural Engineering Research, 15(1), 65-74. doi:10.1016/0021-8634(70)90111-3Studman, C. J. (2001). Computers and electronics in postharvest technology — a review. Computers and Electronics in Agriculture, 30(1-3), 109-124. doi:10.1016/s0168-1699(00)00160-5Van Henten, E. J., Van Tuijl, B. A. J., Hemming, J., Kornet, J. G., Bontsema, J., & Van Os, E. A. (2003). Field Test of an Autonomous Cucumber Picking Robot. Biosystems Engineering, 86(3), 305-313. doi:10.1016/j.biosystemseng.2003.08.002Van Henten, E. J., Van’t Slot, D. A., Hol, C. W. J., & Van Willigenburg, L. G. (2009). Optimal manipulator design for a cucumber harvesting robot. Computers and Electronics in Agriculture, 65(2), 247-257. doi:10.1016/j.compag.2008.11.004Van Zeebroeck, M., Van linden V., Darius, P., De Ketelaere, B., Ramon, H., & Tijskens, E. (2007). The effect of fruit factors on the bruise susceptibility of apples. Postharvest Biology and Technology, 46(1), 10-19. doi:10.1016/j.postharvbio.2007.03.017Wallin, P. J. (1997). Robotics in the food industry: an update. Trends in Food Science & Technology, 8(6), 193-198. doi:10.1016/s0924-2244(97)01042-xWilson, M. (2010). Developments in robot applications for food manufacturing. Industrial Robot: An International Journal, 37(6), 498-502. doi:10.1108/01439911011081632Wurdemann, H. A., Aminzadeh, V., Dai, J. S., Reed, J., & Purnell, G. (2011). Category-based food ordering processes. Trends in Food Science & Technology, 22(1), 14-20. doi:10.1016/j.tifs.2010.10.003Zhong, Z. W., & Yeong, C. K. (2006). Development of a gripper using SMA wire. Sensors and Actuators A: Physical, 126(2), 375-381. doi:10.1016/j.sna.2005.10.017Zhu, T., Liu, R., Wang, X. D., & Wang, K. (2006). Principle and Application of Vibrating Suction Method. 2006 IEEE International Conference on Robotics and Biomimetics. doi:10.1109/robio.2006.34024

    CAGD - Computer Aided Gripper Design for a Flexible Gripping System

    No full text
    This paper is a summary of the recently accomplished research work on flexible gripping systems. The goal is to develop a gripper which can be used for a great amount of geometrically variant workpieces. The economic aspect is of particular importance during the whole development. The high flexibility of the gripper is obtained by three parallel used principles. These are human and computer based analysis of the gripping object as well as mechanical adaptation of the gripper to the object with the help of servo motors. The focus is on the gripping of free-form surfaces with suction cup

    Automated inspection system for headlamp reflectors

    No full text
    corecore