118 research outputs found

    Expression of the Parkinson’s Disease-Associated Gene Alpha-Synuclein is Regulated by the Neuronal Cell Fate Determinant TRIM32

    Get PDF
    Alpha-synuclein is an abundant neuronal protein which has been associated with physiological processes like synaptic function, neurogenesis, and neuronal differentiation but also with pathological neurodegeneration. Indeed, alpha-synuclein (snca) is one of the major genes implicated in Parkinson’s disease (PD). However, little is known about the regulation of alpha-synuclein expression. Unveiling the mechanisms that control its regulation is of high importance, as it will enable to further investigate and comprehend the physiological role of alpha-synuclein as well as its potential contribution in the aetiology of PD. Previously, we have shown that the protein TRIM32 regulates fate specification of neural stem cells. Here, we investigated the impact of TRIM32 on snca expression regulation in vitro and in vivo in neural stem cells and neurons. We demonstrated that TRIM32 is positively influencing snca expression in a neuronal cell line, while the absence of TRIM32 is causing deregulated levels of snca transcripts. Finally, we provided evidence that TRIM32 binds to the promoter region of snca, suggesting a novel mechanism of its transcriptional regulation. On the one hand, the presented data link the PD-associated gene alpha-synuclein to the neuronal cell fate determinant TRIM32 and thereby support the concept that PD is a neurodevelopmental disorder. On the other hand, they imply that defects in olfactory bulb adult neurogenesis might contribute to early PD-associated non-motor symptoms like hyposmia.The J. C. S.’s lab is supported by the Boehringer Ingelheim Foundation and the fund “Innovative Medical Research” of the University of Münster Medical School, Schram-Stiftung (T287/21795/2011) by the Fonds National de la Recherche (FNR) Luxembourg (CORE, C13/BM/5791363), a University Luxembourg Internal Research Project (MidNSCs) and the EU Joint Programme - Neurodegenerative Disease Research (JPND) project (supported by the FNR). L.G.C. was supported by a fellowship from the FNR (AFR, Aides à la Formation-Recherche). M.C.M ’s lab is supported by Grant SAF2012-36143 from Spanish Ministerio de Ciencia e and LE310U14 from the Junta de Castilla y Leon. S.F.A holds a predoctoral contract (PIRTU) from Junta de Castilla y Leon

    Synchronous Symmetry Breaking in Neurons with Different Neurite Counts

    Get PDF
    As neurons develop, several immature processes (i.e., neurites) grow out of the cell body. Over time, each neuron breaks symmetry when only one of its neurites grows much longer than the rest, becoming an axon. This symmetry breaking is an important step in neurodevelopment, and aberrant symmetry breaking is associated with several neuropsychiatric diseases, including schizophrenia and autism. However, the effects of neurite count in neuronal symmetry breaking have never been studied. Existing models for neuronal polarization disagree: some predict that neurons with more neurites polarize up to several days later than neurons with fewer neurites, while others predict that neurons with different neurite counts polarize synchronously. We experimentally find that neurons with different neurite counts polarize synchronously. We also show that despite the significant differences among the previously proposed models, they all agree with our experimental findings when the expression levels of the proteins responsible for symmetry breaking increase with neurite count. Consistent with these results, we observe that the expression levels of two of these proteins, HRas and shootin1, significantly correlate with neurite count. This coordinated symmetry breaking we observed among neurons with different neurite counts may be important for synchronized polarization of neurons in developing organisms

    DAZL Relieves miRNA-Mediated Repression of Germline mRNAs by Controlling Poly(A) Tail Length in Zebrafish

    Get PDF
    BACKGROUND:During zebrafish embryogenesis, microRNA (miRNA) miR-430 contributes to restrict Nanos1 and TDRD7 to primordial germ cells (PGCs) by inducing mRNA deadenylation, mRNA degradation, and translational repression of nanos1 and tdrd7 mRNAs in somatic cells. The nanos1 and tdrd7 3'UTRs include cis-acting elements that allow activity in PGCs even in the presence of miRNA-mediated repression. METHODOLOGY/PRINCIPAL FINDINGS:Using a GFP reporter mRNA that was fused with tdrd7 3'UTR, we show that a germline-specific RNA-binding protein DAZ-like (DAZL) can relieve the miR-430-mediated repression of tdrd7 mRNA by inducing poly(A) tail elongation (polyadenylation) in zebrafish. We also show that DAZL enhances protein synthesis via the 3'UTR of dazl mRNA, another germline mRNA targeted by miR-430. CONCLUSIONS/SIGNIFICANCE:Our present study indicated that DAZL acts as an "anti-miRNA factor" during vertebrate germ cell development. Our data also suggested that miRNA-mediated regulation can be modulated on specific target mRNAs through the poly(A) tail control

    Lafora disease E3-ubiquitin ligase malin is related to TRIM32 at both the phylogenetic and functional level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malin is an E3-ubiquitin ligase that is mutated in Lafora disease, a fatal form of progressive myoclonus epilepsy. In order to perform its function, malin forms a functional complex with laforin, a glucan phosphatase that facilitates targeting of malin to its corresponding substrates. While laforin phylogeny has been studied, there are no data on the evolutionary lineage of malin.</p> <p>Results</p> <p>After an extensive search for malin orthologs, we found that malin is present in all vertebrate species and a cephalochordate, in contrast with the broader species distribution previously reported for laforin. These data suggest that in addition to forming a functional complex, laforin and perhaps malin may also have independent functions. In addition, we found that malin shares significant identity with the E3-ubiquitin ligase TRIM32, which belongs to the tripartite-motif containing family of proteins. We present experimental evidence that both malin and TRIM32 share some substrates for ubiquitination, although they produce ubiquitin chains with different topologies. However, TRIM32-specific substrates were not reciprocally ubiquitinated by the laforin-malin complex.</p> <p>Conclusions</p> <p>We found that malin and laforin are not conserved in the same genomes. In addition, we found that malin shares significant identity with the E3-ubiquitin ligase TRIM32. The latter result suggests a common origin for malin and TRIM32 and provides insights into possible functional relationships between both proteins.</p

    The RHO-1 RhoGTPase Modulates Fertility and Multiple Behaviors in Adult C. elegans

    Get PDF
    The Rho family of small GTPases are essential during early embryonic development making it difficult to study their functions in adult animals. Using inducible transgenes expressing either a constitutively active version of the single C. elegans Rho ortholog, RHO-1, or an inhibitor of endogenous Rho (C3 transferase), we demonstrate multiple defects caused by altering Rho signaling in adult C. elegans. Changes in RHO-1 signaling in cholinergic neurons affected locomotion, pharyngeal pumping and fecundity. Changes in RHO-1 signaling outside the cholinergic neurons resulted in defective defecation, ovulation, and changes in C. elegans body morphology. Finally both increased and decreased RHO-1 signaling in adults resulted in death within hours. The multiple post-developmental roles for Rho in C. elegans demonstrate that RhoA signaling pathways continue to be used post-developmentally and the resulting phenotypes provide an opportunity to further study post-developmental Rho signaling pathways using genetic screens

    Multiple Statistical Analysis Techniques Corroborate Intratumor Heterogeneity in Imaging Mass Spectrometry Datasets of Myxofibrosarcoma

    Get PDF
    MALDI mass spectrometry can generate profiles that contain hundreds of biomolecular ions directly from tissue. Spatially-correlated analysis, MALDI imaging MS, can simultaneously reveal how each of these biomolecular ions varies in clinical tissue samples. The use of statistical data analysis tools to identify regions containing correlated mass spectrometry profiles is referred to as imaging MS-based molecular histology because of its ability to annotate tissues solely on the basis of the imaging MS data. Several reports have indicated that imaging MS-based molecular histology may be able to complement established histological and histochemical techniques by distinguishing between pathologies with overlapping/identical morphologies and revealing biomolecular intratumor heterogeneity. A data analysis pipeline that identifies regions of imaging MS datasets with correlated mass spectrometry profiles could lead to the development of novel methods for improved diagnosis (differentiating subgroups within distinct histological groups) and annotating the spatio-chemical makeup of tumors. Here it is demonstrated that highlighting the regions within imaging MS datasets whose mass spectrometry profiles were found to be correlated by five independent multivariate methods provides a consistently accurate summary of the spatio-chemical heterogeneity. The corroboration provided by using multiple multivariate methods, efficiently applied in an automated routine, provides assurance that the identified regions are indeed characterized by distinct mass spectrometry profiles, a crucial requirement for its development as a complementary histological tool. When simultaneously applied to imaging MS datasets from multiple patient samples of intermediate-grade myxofibrosarcoma, a heterogeneous soft tissue sarcoma, nodules with mass spectrometry profiles found to be distinct by five different multivariate methods were detected within morphologically identical regions of all patient tissue samples. To aid the further development of imaging MS based molecular histology as a complementary histological tool the Matlab code of the agreement analysis, instructions and a reduced dataset are included as supporting information

    A Modifier Screen for Bazooka/PAR-3 Interacting Genes in the Drosophila Embryo Epithelium

    Get PDF
    The development and homeostasis of multicellular organisms depends on sheets of epithelial cells. Bazooka (Baz; PAR-3) localizes to the apical circumference of epithelial cells and is a key hub in the protein interaction network regulating epithelial structure. We sought to identify additional proteins that function with Baz to regulate epithelial structure in the Drosophila embryo.The baz zygotic mutant cuticle phenotype could be dominantly enhanced by loss of known interaction partners. To identify additional enhancers, we screened molecularly defined chromosome 2 and 3 deficiencies. 37 deficiencies acted as strong dominant enhancers. Using deficiency mapping, bioinformatics, and available single gene mutations, we identified 17 interacting genes encoding known and predicted polarity, cytoskeletal, transmembrane, trafficking and signaling proteins. For each gene, their loss of function enhanced adherens junction defects in zygotic baz mutants during early embryogenesis. To further evaluate involvement in epithelial polarity, we generated GFP fusion proteins for 15 of the genes which had not been found to localize to the apical domain previously. We found that GFP fusion proteins for Drosophila ASAP, Arf79F, CG11210, Septin 5 and Sds22 could be recruited to the apical circumference of epithelial cells. Nine of the other proteins showed various intracellular distributions, and one was not detected.Our enhancer screen identified 17 genes that function with Baz to regulate epithelial structure in the Drosophila embryo. Our secondary localization screen indicated that some of the proteins may affect epithelial cell polarity by acting at the apical cell cortex while others may act through intracellular processes. For 13 of the 17 genes, this is the first report of a link to baz or the regulation of epithelial structure

    A PKC-Dependent Recruitment of MMP-2 Controls Semaphorin-3A Growth-Promoting Effect in Cortical Dendrites

    Get PDF
    There is increasing evidence for a crucial role of proteases and metalloproteinases during axon growth and guidance. In this context, we recently described a functional link between the chemoattractive Sema3C and Matrix metalloproteinase 3 (MMP3). Here, we provide data demonstrating the involvement of MMP-2 to trigger the growth-promoting effect of Sema3A in cortical dendrites. The in situ analysis of MMP-2 expression and activity is consistent with a functional growth assay demonstrating in vitro that the pharmacological inhibition of MMP-2 reduces the growth of cortical dendrites in response to Sema3A. Hence, our results suggest that the selective recruitment and activation of MMP-2 in response to Sema3A requires a PKC alpha dependent mechanism. Altogether, we provide a second set of data supporting MMPs as effectors of the growth-promoting effects of semaphorins, and we identify the potential signalling pathway involved
    corecore