200 research outputs found

    K-Bayes Reconstruction for Perfusion MRI I: Concepts and Application

    Get PDF
    Despite the continued spread of magnetic resonance imaging (MRI) methods in scientific studies and clinical diagnosis, MRI applications are mostly restricted to high-resolution modalities, such as structural MRI. While perfusion MRI gives complementary information on blood flow in the brain, its reduced resolution limits its power for detecting specific disease effects on perfusion patterns. This reduced resolution is compounded by artifacts such as partial volume effects, Gibbs ringing, and aliasing, which are caused by necessarily limited k-space sampling and the subsequent use of discrete Fourier transform (DFT) reconstruction. In this study, a Bayesian modeling procedure (K-Bayes) is developed for the reconstruction of perfusion MRI. The K-Bayes approach (described in detail in Part II: Modeling and Technical Development) combines a process model for the MRI signal in k-space with a Markov random field prior distribution that incorporates high-resolution segmented structural MRI information. A simulation study was performed to determine qualitative and quantitative improvements in K-Bayes reconstructed images compared with those obtained via DFT. The improvements were validated using in vivo perfusion MRI data of the human brain. The K-Bayes reconstructed images were demonstrated to provide reduced bias, increased precision, greater effect sizes, and higher resolution than those obtained using DFT

    DTI studies in patients with Alzheimer's disease, mild cognitive impairment, or normal cognition with evaluation of the intrinsic background gradients

    Get PDF
    IntroductionThe objective of the study was to explore the impact of the background gradients on diffusion tensor (DT) magnetic resonance imaging (DT-MRI) in patients with Alzheimer's disease (AD), mild cognitive impairment (MCI), or cognitively normal (CN) aging.MethodsTwo DT-MRI sets with positive and negative polarities of the diffusion-sensitizing gradients were obtained in 15 AD patients, 18 MCI patients, and 16 CN control subjects. The maps of mean diffusivity (MD) and fractional anisotropy (FA) were computed separately for positive (p: pMD and pFA) and negative (n: nMD and nFA) polarities, and we computed the geometric mean (gm) of the DT-MRI to obtain the gmFA and gmMD with reducing the background gradient effects. Regional variations were assessed across the groups using one-way analysis of variance.ResultsIncreased regional gmMD values in the AD subjects, as compared to the regional gmMD values in the MCI and CN subjects, were found primarily in the frontal, limbic, and temporal lobe regions. We also found increased nMD and pMD values in the AD subjects compared to those values in the MCI and CN subjects, including in the temporal lobe and the left limbic parahippocampal gyrus white matter. Results of comparisons among the three methods showed that the left limbic parahippocampal gyrus and right temporal gyrus were the increased MD in the AD patients for all three methods.ConclusionBackground gradients affect the DT-MRI measurements in AD patients. Geometric average diffusion measures can be useful to minimize the intrinsic local magnetic susceptibility variations in brain tissue

    Bayesian segmentation of brainstem structures in MRI

    Get PDF
    VK: Lampinen, J.In this paper we present a method to segment four brainstem structures (midbrain, pons, medulla oblongata and superior cerebellar peduncle) from 3D brain MRI scans. The segmentation method relies on a probabilistic atlas of the brainstem and its neighboring brain structures. To build the atlas, we combined a dataset of 39 scans with already existing manual delineations of the whole brainstem and a dataset of 10 scans in which the brainstem structures were manually labeled with a protocol that was specifically designed for this study. The resulting atlas can be used in a Bayesian framework to segment the brainstem structures in novel scans. Thanks to the generative nature of the scheme, the segmentation method is robust to changes in MRI contrast or acquisition hardware. Using cross validation, we show that the algorithm can segment the structures in previously unseen T1 and FLAIR scans with great accuracy (mean error under 1 mm) and robustness (no failures in 383 scans including 168 AD cases). We also indirectly evaluate the algorithm with a experiment in which we study the atrophy of the brainstem in aging. The results show that, when used simultaneously, the volumes of the midbrain, pons and medulla are significantly more predictive of age than the volume of the entire brainstem, estimated as their sum. The results also demonstrate that the method can detect atrophy patterns in the brainstem structures that have been previously described in the literature. Finally, we demonstrate that the proposed algorithm is able to detect differential effects of AD on the brainstem structures. The method will be implemented as part of the popular neuroimaging package FreeSurfer.Peer reviewe

    Reduced FDG-PET brain metabolism and executive function predict clinical progression in elderly healthy subjects

    Get PDF
    Brain changes reminiscent of Alzheimer disease (AD) have been previously reported in a substantial portion of elderly cognitive healthy (HC) subjects. The major aim was to evaluate the accuracy of MRI assessed regional gray matter (GM) volume, 18F-fluorodeoxyglucose positron emission tomography (FDG-PET),and neuropsychological test scores to identify those HC subjects who subsequently convert to mild cognitive impairment (MCI) or AD dementia. We obtained in 54 healthy control (HC) subjects a priori defined region of interest (ROI) values of medial temporal and parietal FDG-PET and medial temporal GM volume. In logistic regression analyses, these ROI values were tested together with neuropsychological test scores (free recall, trail making test B (TMT-B)) as predictors of HC conversion during a clinical follow-up between 3 and 4 years. In voxelbased analyses, FDG-PET and MRI GM maps were compared between HC converters and HC non-converters. Out of the 54 HC subjects, 11 subjects converted to MCI or AD dementia. Lower FDG-PET ROI values were associated with higher likelihood of conversion (p = 0.004),with the area under the curve (AUC) yielding 82.0% (95% CI = (95.5%,68.5%)). The GM volume ROI was not a significant predictor (p = 0.07). TMT-B but not the free recall tests were a significant predictor (AUC = 71% (95% CI = 50.4%,91.7%)). For the combination of FDG-PET and TMT-B, the AUC was 93.4% (sensitivity = 82%,specificity = 93%). Voxel-based group comparison showed reduced FDG-PET metabolism within the temporo-parietal and prefrontal cortex in HC converters. In conclusion, medial temporal and-parietal FDG-PET and executive function show a clinically acceptable accuracy for predicting clinical progression in elderly HC subjects. (C) 2013 The Authors. Published by Elsevier Inc. All rights reserved

    Hippocampal Volume Differences in Gulf War Veterans with Current Versus Lifetime Posttraumatic Stress Disorder Symptoms

    Get PDF
    Background: Decreased hippocampal volume is described in posttraumatic stress disorder (PTSD) and depression. However, it is not known whether it is a risk factor for the development of PTSD or a consequence of PTSD. We sought to determine the effects of PTSD and depressive symptoms on hippocampal volume. Methods: Clinical and magnetic resonance imaging data were collected in a cross sectional study of 244 GulfWarveterans. Measures included lifetime and current Clinician Administered PTSD Scale, Hamilton Depression Scale, Life Stressor Checklist, and Lifetime Drinking History. Magnetic resonance imaging data were acquired with a 1.5-T scanner and analyzed with automated and semiautomated image processing techniques. Results: Eighty-two veterans had lifetime PTSD, 44 had current PTSD, and 38 had current depression. In the linear regression analysis, current PTSD symptoms (standardized coefficient B= .25, p =.03) but neither lifetime PTSD symptoms nor current depression were associated with smaller hippocampal volume. Gender, age, history of early life trauma, education, lifetime and current alcohol use, current marijuana use, and treatment with antidepressants did not have independent effects. Participants with chronic PTSD had, on average, a smaller hippocampus compared with those with remitted PTSD. Conclusions: The finding that current but not lifetime PTSD symptom severity explains hippocampal size raises two possibilities: either a small hippocampus is a risk factor for lack of recovery from PTSD (trait) or PTSD effects on hippocampal volume are reversible once PTSD symptoms remit and the patient recovers (state)

    Meta-analysis of the predictive value of DNA aneuploidy in malignant transformation of oral potentially malignant disorders

    Get PDF
    This study aimed to identify the utility of diffusion tensor imaging (DTI) in measuring the regional distribution of abnormal microstructural progression in patients with Parkinson's disease who were enrolled in the Parkinson's progression marker initiative (PPMI). One hundred and twenty two de-novo PD patients (age = 60.5±9) and 50 healthy controls (age = 60.6±11) had DTI scans at baseline and 12.6±1 months later. Automated image processing included an intra-subject registration of all time points and an inter-subjects registration to a brain atlas. Annualized rates of DTI variations including fractional anisotropy (FA), radial (rD) and axial (aD) diffusivity were estimated in a total of 118 white matter and subcortical regions of interest. A mixed effects model framework was used to determine the degree to which DTI changes differed in PD relative to changes in healthy subjects. Significant DTI changes were also tested for correlations with changes in clinical measures, dopaminergic imaging and CSF biomarkers in PD patients. Compared to normal aging, PD was associated with higher rates of FA reduction, rD and aD increases predominantly in the substantia nigra, midbrain and thalamus. The highest rates of FA reduction involved the substantia nigra (3.6±1.4%/year from baseline, whereas the highest rates of increased diffusivity involved the thalamus (rD: 8.0±2.9%/year, aD: 4.0±1.5%/year). In PD patients, high DTI changes in the substantia nigra correlated with increasing dopaminergic deficits as well as with declining α-synuclein and total tau protein concentrations in cerebrospinal fluid. Increased DTI rates in the thalamus correlated with progressive decline in global cognition in PD. The results suggest that higher rates of regional microstructural degeneration are potential markers of PD progression

    Joint Assessment of Structural, Perfusion, and Diffusion MRI in Alzheimer's Disease and Frontotemporal Dementia

    Get PDF
    Most MRI studies of Alzheimer's disease (AD) and frontotemporal dementia (FTD) have assessed structural, perfusion and diffusion abnormalities separately while ignoring the relationships across imaging modalities. This paper aimed to assess brain gray (GM) and white matter (WM) abnormalities jointly to elucidate differences in abnormal MRI patterns between the diseases. Twenty AD, 20 FTD patients, and 21 healthy control subjects were imaged using a 4 Tesla MRI. GM loss and GM hypoperfusion were measured using high-resolution T1 and arterial spin labeling MRI (ASL-MRI). WM degradation was measured with diffusion tensor imaging (DTI). Using a new analytical approach, the study found greater WM degenerations in FTD than AD at mild abnormality levels. Furthermore, the GM loss and WM degeneration exceeded the reduced perfusion in FTD whereas, in AD, structural and functional damages were similar. Joint assessments of multimodal MRI have potential value to provide new imaging markers for improved differential diagnoses between FTD and AD

    Author Correction: FAM222A encodes a protein which accumulates in plaques in Alzheimer’s disease (Nature Communications, (2020), 11, 1, (411), 10.1038/s41467-019-13962-0)

    Get PDF
    In the original version of the manuscript, the image shown in Figure 4g, bottom row (Aβ1–42 + rAggregatin), under “6h” was incorrect. This image incorrectly showed the same sample as shown in the original Figure 4g, top row (Aβ1–42), under “0.5h”. The correct version of figure 4g is as follows: (Figure presented.) which replaces the previous incorrect version: (Figure presented.)

    Concordance and Discordance Between Brain Perfusion and Atrophy in Frontotemporal Dementia

    Get PDF
    The aim of this study was to determine if a dissociation between reduced cerebral perfusion and gray matter (GM) atrophy exists in frontotemporal dementia (FTD). The study included 28 patients with FTD and 29 cognitive normal (CN) subjects. All subjects had MRI at 1.5 T, including T1-weighted structural and arterial spin labeling (ASL) perfusion imaging. Non-parametric concordance/discordance tests revealed that GM atrophy without hypoperfusion occurs in the premotor cortex in FTD whereas concordant GM atrophy and hypoperfusion changes are found in the right prefrontal cortex and bilateral medial frontal lobe. The results suggest that damage of brain function in FTD, assessed by ASL perfusion, can vary regionally despite widespread atrophy. Detection of discordance between brain perfusion and structure in FTD might aid diagnosis and staging of the disease
    corecore