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Hippocampal Volume Differences in Gulf War Veterans
with Current Versus Lifetime Posttraumatic Stress
Disorder Symptoms
Brigitte A. Apfel, Jessica Ross, Jennifer Hlavin, Dieter J. Meyerhoff, Thomas J. Metzler, Charles R. Marmar,
Michael W. Weiner, Norbert Schuff, and Thomas C. Neylan

Background: Decreased hippocampal volume is described in posttraumatic stress disorder (PTSD) and depression. However, it is not
known whether it is a risk factor for the development of PTSD or a consequence of PTSD. We sought to determine the effects of PTSD and
depressive symptoms on hippocampal volume.

Methods: Clinical and magnetic resonance imaging data were collected in a cross sectional study of 244 Gulf War veterans. Measures included lifetime
and current Clinician Administered PTSD Scale, Hamilton Depression Scale, Life Stressor Checklist, and Lifetime Drinking History. Magnetic resonance
imaging data were acquired with a 1.5-T scanner and analyzed with automated and semiautomated image processing techniques.

Results: Eighty-two veterans had lifetime PTSD, 44 had current PTSD, and 38 had current depression. In the linear regression analysis,
current PTSD symptoms (standardized coefficient � � �.25, p � .03) but neither lifetime PTSD symptoms nor current depression were
associated with smaller hippocampal volume. Gender, age, history of early life trauma, education, lifetime and current alcohol use, current
marijuana use, and treatment with antidepressants did not have independent effects. Participants with chronic PTSD had, on average, a
smaller hippocampus compared with those with remitted PTSD.

Conclusions: The finding that current but not lifetime PTSD symptom severity explains hippocampal size raises two possibilities: either a
small hippocampus is a risk factor for lack of recovery from PTSD (trait) or PTSD effects on hippocampal volume are reversible once PTSD
symptoms remit and the patient recovers (state).

Key Words: Depression, Gulf War veterans, hippocampus, mag-
netic resonance imaging, posttraumatic stress disorder

M agnetic resonance imaging (MRI) studies have shown that
posttraumatic stress disorder (PTSD) is associated with a
reduced size of the hippocampus (1– 4), a brain structure

known to be responsive to stress (5,6) and essential to learning and
memory processing (7,8). However, the nature of the relation be-
tween PTSD and hippocampal size is poorly understood.

Two fundamentally different ideas about the relationship are con-
sidered. According to one, a small hippocampus is considered a sequel
of chronic stress reactivity in PTSD, and hippocampal damage is either
attributed to the toxic effects of glucocorticoids and glutamate or
related to decreased brain trophic factors such as brain-derived neu-
rotrophic factor (9–14). A causal model of stress exposure on hip-
pocampal damage is largely supported by animal studies (15–19). It
has further been shown that duration and severity of PTSD are in-
versely related with hippocampal volume (1,20) and, in one study, that
pharmacological intervention can reverse the volume reduction (21),
which implies hippocampal plasticity in humans.

The alternative view is that a preexisting small hippocampus
increases the vulnerability to develop PTSD. This idea is supported

by an elegant imaging study of homozygous twins discordant for
trauma exposure (22) where PTSD symptom severity in combat-
exposed veterans was predicted by hippocampal volume of the
unexposed twins. A definite answer to the causality question re-
quires longitudinal studies with imaging and clinical data before
and after exposure to a traumatic event.

The question is even more complex, because both PTSD and
depression can develop after trauma exposure (23) and are often
comorbid. Data from the National Comorbidity Study indicate that
48% of individuals with PTSD have experienced major depressive
disorder at some time in their lives (24). Depression is also thought
to be associated with smaller hippocampal volume. However, not
all studies have found that, and duration of illness as well as number
of depressive episodes might play an important role (25–28).

With this background, we evaluated hippocampal volumes of
veterans from the First Persian Gulf War who had participated in a
large MRI study of Gulf War Illness. Although we have no longitudi-
nal imaging data and therefore cannot determine causality, we
were fortunate to have a relatively large sample size that allowed us
to contrast the effects of current versus remitted PTSD on hip-
pocampal volume. We sought to test the hypothesis that veterans
with remitted as well as current PTSD would have smaller hip-
pocampal volumes compared with veterans without PTSD, inde-
pendent of the effects of depression. This hypothesis was predi-
cated on the model suggested by the twin study—that is, smaller
hippocampal volume is a trait vulnerability risk factor for the devel-
opment of PTSD.

Methods and Materials

Study Design
We conducted a secondary analysis of data from a cross sec-

tional study of the effects of service in the Persian Gulf War on the
brain. The original study was designed to test the hypothesis that
Gulf War Illness was associated with decreased N-acetyl aspartate,
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an in vivo marker of neuronal viability, in the basal ganglia and the
pons. All research was approved by the University of California at
San Francisco and Veterans Administration Committees on Human
Research and the Department of Defense Human Subjects Re-
search Review Board. All procedures were performed in accordance
with relevant guidelines and regulations. All participants (n � 279)
provided written informed consent. The design is described in de-
tail elsewhere (29). The primary study, conducted between 2002
and 2007, did not find an association between Gulf War Illness and
structural or spectroscopic MRI findings in the brain. Therefore,
there was no need to control for the effects of Gulf War Illness on
hippocampal volume.

Participants
Participants had been recruited as a convenience sample with a

variety of methods, largely by advertisement, and also with a list of
Gulf War Veterans provided by the Department of Defense.
There was no effort to recruit specifically for subjects with PTSD
or depression. However, because at the onset of the study it was
recognized that PTSD, depression, and alcohol abuse/depen-
dence might affect cognition, clinical symptoms and brain struc-
ture, or metabolism, quantitative measurements of these vari-
ables were obtained (see following). Inclusion criterion was
being a US veteran of the First Persian Gulf War; exclusion criteria
were severe physical impairment or medical illness, current or
lifetime history of psychosis or of suicidal or homicidal ideation,
history of neurological or systemic illness affecting central ner-
vous system functioning, history of head injury with loss of
consciousness for at least 10 min, presence of severe claustro-
phobia, ferro-metallic objects in the body, and evidence of cho-
lesteatoma or tympanic membrane perforation. The Structured
Clinical Interview for DSM-IV Diagnosis (SCID) was used to diag-
nose psychiatric disorders other than PTSD (30).

For the present analysis data from 35 participants (12.5%) had to
be excluded because of insufficient image quality. We had com-
plete datasets for the relevant variables from 244 participants.

Procedures
A trained Ph.D.-level clinical interviewer conducted the inter-

view. In addition to standardized questionnaires, demographic
data and data on medication including antidepressants, alcohol
use, and drug use were collected. The diagnostic interviews were
audio-taped. Fifteen percent of the interviews were randomly se-
lected and reviewed by blinded raters, who made independent
diagnostic decisions regarding Clinician Administered PTSD Scale
(CAPS), Hamilton Depression Scale (HAM-D), and SCID-IV assess-
ments to establish levels of inter-rater reliability. The inter-rater
reliability showed a � of .90 for the SCID, CAPS, and HAM-D categor-
ical diagnoses. Discrepancies in the evaluation of subjects were
resolved by a consensus meeting.

Measures
The CAPS is a measure that follows the DSM-IV criteria for PTSD

(31). Each of the 17 PTSD symptoms is rated with regard to fre-
quency and intensity, so that an overall severity score can be ob-
tained. The continuous score on the CAPS was used for primary
hypothesis testing. Following the definition of Weathers et al. (32),
who defined a score of 40 or more as moderate PTSD, we chose this
cut-off point as our criterion for a PTSD diagnosis in secondary
analyses. The questionnaire allows the rating of PTSD symptoms
during the last month (current PTSD symptoms) and for the month
during lifetime when the symptoms were worst (lifetime PTSD
symptoms) (32).

The HAM-D is a frequently used 17-item depression inventory. A
score up to seven is seen as in the normal range; we defined partic-
ipants with a score of � 14 as meeting criteria for depression (33).

The Life Stressor Checklist-Revised is a 30-item questionnaire
that asks about traumatic or stressful life events such as physical or
sexual assault, death of a close person, or natural disasters, follow-
ing a yes/no format. Severity, impact, and time frame of endorsed
events are further clarified (34). We used a binary score of 14 trau-
matic life events to determine the presence of early life trauma
before the age of 14 (35).

The Lifetime Drinking History (LDH) is a structured interview that
obtains quantitative data on the amount, duration, and pattern of
lifetime alcohol consumption. It provides quantitative indexes of
the alcohol consumption patterns of an individual, including fre-
quency, quantity, and type of drink, at different times of life. The
LDH has excellent psychometric properties (36). For the purpose of
this analysis we calculated average drinks/months over lifetime (i.e.,
since onset of first alcohol consumption) and current average
drinks/month (defined as averaged over the last phase of drinking
as operationalized in the LDH).

Imaging
Structural MRI data were acquired with a 1.5-T scanner (Vision,

Siemens Medical Systems, Iselin, New Jersey) and a three-dimen-
sional magnetization prepared T1-weighted gradient echo se-
quence with the following parameters: repetition time/spin-echo
time/inversion time � 10/4/300 msec, 1 � 1 mm2 in-plane resolu-
tion, and 1.5-mm slab thickness, angulated perpendicular to the
long axis of the hippocampus.

Semiautomated hippocampal volumetry was carried out as de-
scribed in detail previously (37), with a commercially available high-
dimensional brain mapping tool (Medtronic Surgical Navigation
Technologies, Louisville, Colorado) that has been validated and
compared with manual tracing of the hippocampus (37). Briefly,
measurement of hippocampal volume is achieved first by manually
placing 22 control points as local landmarks for the hippocampus
on individual brain MRI data and second by applying fluid image
transformations to match the individual brains to a template brain
(38). The pixels corresponding to the hippocampus are then labeled
and counted to obtain volumes (Figure 1). This method of hip-
pocampal voluming has a documented reliability of an intraclass
coefficient better than .94 (37) and has been used to measure
hippocampal volume in alcohol-dependent individuals (39). Intra-
cranial volume (ICV) was determined with FreeSurfer, an FSL-based
software that uses an atlas based spatial normalization procedure
on T1 weighted images (40,41).

Statistics
Bivariate correlation analyses were performed to determine the

associations among clinical symptom scores. Because ICV is a sig-
nificant determinant for regional brain volume including hip-
pocampal volume, individual variations in ICV were accounted for
by regressing hippocampal volumes against ICVs in the group and
with the residuals of this regression as outcome variables for the
following hierarchical linear regression analysis. Demographic fac-
tors, trauma experience, substance use, antidepressant treatment,
and clinical symptom scores were entered as independent predic-
tors in chronological order. Because the clinical symptom scores
were highly correlated, they were entered into the regression equa-
tion individually and in different order. Group comparisons of the
hierarchical models were tested with the F statistic. To simplify the
model we performed a second regression analysis including only
variables that had shown a p value of � .1 in the first hierarchical
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regression analysis. This model was then used to test for interaction
between PTSD symptoms/depression and depression/criterion A
event. To determine whether hippocampal volumes differed
among participants with chronic PTSD symptoms who were cur-
rently symptomatic, those with lifetime PTSD who have recovered,
and those who never developed PTSD, a one-way analysis of vari-
ance was performed with posthoc testing to provide information
about group differences. For each of the groups, mean values of the
independent variables were calculated. The statistic package SPSS
16.0 (SPSS, Chicago, Illinois) was used for all these analyses. The
level of significance was � � .05 in all tests.

Results

The demographic data are shown in Table 1. We had a predom-
inantly male Caucasian population with a mean age of 45 years. A
history of early life trauma was reported by 21% of the participants.
Although all our participants were Gulf War veterans, only 61%
fulfilled the criterion A of the DSM-IV PTSD diagnosis by reporting
being exposed to, witnessing, or hearing about an event involving
threat for life or physical integrity and with experience of intense
fear, helplessness, or horror during or outside the military service.
Figure 2 shows the types of trauma experienced: nearly 50% of the
participants reported a combat trauma, and 10% reported an acci-
dent. Mean time since trauma exposure was 14.7 years with a range
from 1 to 44 years. With the cut-off point of � 40 on the CAPS for the
diagnosis of PTSD, one-half of the 82 participants meeting criteria
for lifetime PTSD had recovered at the time of the study. Thirty-
eight participants had current depression on the basis of a HAM-D
score of � 14. Bivariate correlation analysis revealed strong corre-
lations among the three clinical symptom scores, lifetime CAPS,
current CAPS, and HAM-D (Spearman’s � between .49 and .88).
Results of the linear regression analysis, in which hippocampal vol-
ume adjusted for ICV was used as outcome, are presented in Table
2. The demographic factors age, gender and education, lifetime
alcohol use, current alcohol or marijuana use, treatment with anti-
depressants, and history of early life trauma or of a traumatic event
fulfilling the DSM-IV criterion for PTSD were not significantly asso-
ciated with hippocampal volume. Lifetime PTSD symptom scores
were also not significantly associated with hippocampal volume. In
contrast, higher current PTSD symptom scores were associated
with a smaller hippocampal volume. The result did not change
significantly when current PTSD symptom scores were entered in
the regression before lifetime scores. Depression scores were not
significantly associated with hippocampal volume, whether they
were entered before or after PTSD scores in the hierarchical model
[�R2 � .0, �F (1,233) � .03, p � .8, and �R2 � .01, �F (1,231) � 1.7,
p � .19, respectively].

The simplified regression model included only predictor variables
with a significance level of p � .1 in the first hierarchical regression
model. In the final step, higher current alcohol use (� � �.14, p � .04)
and higher current PTSD symptoms (� � �.29, p � .02) were associ-
ated with smaller hippocampal volume. Further exploration of the

Figure 1. Example of the semiautomatic hippocampal measurement with Surgical Navigation Technologies: coronal, sagittal, and axial views of the
automatically set boundaries of the hippocampus.

Table 1. Demographic Data and Test Results of 244 Gulf War Veterans

n
Mean or

Percentage SD Minimum Maximum

Age 244 44.7 9.6 31 71
Gender

Female 37 15%
Male 207 85%

Ethnicity
Caucasian 151 62%
Afr. American 38 16%
Latino 21 9%
Other 22 9%
Missing 12 5%

Early Life Trauma
Reported

51 21%

Yrs of Education 233 14.7 2.4 10 20
Lifetime Average

Drinks/Month
241 31 40 0 256

Current Average
Drinks/Month

226 12 28 0 300

Current Marijuana
Use

17 7%

Prevalence of
Trauma
Exposure

148 61%

Time of Trauma
Premilitary 11 5%
Military 118 48%
Postmilitary 19 8%

Duration of PTSD
Symptoms (yrs)

143 12.0 7.9 0 41

Time Since
Trauma (yrs)

149 14.7 7.9 1 44

CAPS Lifetime 244 30.7 35.3 0 125
CAPS Current 244 16.8 24.9 0 108
HAM-D 244 6.7 6.3 0 28
Antidepressant Use 42 17%
ICV, mL 244 1586 147 1217 2012
Hippocampal

Volume, mL
244 5.27 .66 3.57 7.18

PTSD, posttraumatic stress disorder; CAPS, Clinician Administered PTSD
Scale; HAM-D, Hamilton Depression Scale; ICV, intracranial volume.

B.A. Apfel et al. BIOL PSYCHIATRY 2011;69:541–548 543

www.sobp.org/journal



finding that current alcohol use correlated with smaller hippocampal
volume showed that this relationship was driven by two individuals
without trauma exposure who reported current average alcohol use of
180 and 300 drinks/month, more than 3 SDs outside the mean. With-
out these data points only current PTSD symptoms had a significant
influence on hippocampal volume (Table 3). The simplified model
was used to test whether the effect of predictor variables on
hippocampal volume was moderated by other variables. We did
not find a significant moderation of the effect of current PTSD
symptoms by depression [F (1,239) � 3.2; p � .08] or lifetime
PTSD symptoms by depression [F (1,239) � .06; p � .8] or of
depressive symptoms by event criterion A [F (1,239) � .65; p � .4]
or of current PTSD by current alcohol use [F (1,240) � .50; p � .5].

The difference in trauma exposure and PTSD symptoms led to
four groups: participants without exposure to trauma, those with
exposure who never developed PTSD, those with chronic PTSD
(lifetime and current PTSD), and those who recovered from PTSD

(lifetime but no current PTSD). Three participants who fulfilled criteria
for current PTSD only were excluded from the following analyses. Ta-
ble 4 shows the means of the predictor variables and hippocampal
volume separately for the four groups. As expected, the group with
chronic PTSD has more depression, uses more antidepressants, and
has a higher fraction of individuals with early life trauma.

Because ICV-adjusted hippocampal volume was identical for
participants without trauma and without PTSD, these groups were
combined. A one-way analysis of variance (Figure 3) showed a
significant difference [F (2,238) � 4.1, p � .018] in ICV-adjusted
hippocampal volume among participants with chronic PTSD symp-
toms, those who have recovered from PTSD, and those who never
developed PTSD. Post hoc tests indicated that the group effect was
attributable to the participants with chronic PTSD who met criteria
at the time of imaging; their mean hippocampal volume was

Figure 2. Type of trauma reported by 244 Gulf War veterans. Multiple
traumata are possible.

Table 2. Summary of Hierarchical Regression Analysis on Hippocampal Volume Adjusted for ICV

Independent Variables �R2 Adjusted R2 �F

Standardized Coefficients � for Each Step

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

Step 1 .011 .002 1.28
Age �.027 �.025 �.045 �.050 �.056 �.071 �.081 �.085
Gender �.096 �.106 �.116 �.117 �.100 �.085 �.095 �.102

Step 2 .003 .001 .75
Early Life Trauma .056 .053 .067 .094 .093 .104 .100

Step 3 .010 .003 1.19
Education .060 .055 .050 .054 .035 .041
Lifetime Alcohol Use �.068 �.065 �.056 .015 �.005 .000

Step 4 .002 .001 .58
Criterion A Event �.052 .052 .042 .025 .026

Step 5 .012 .010 3.05
Lifetime CAPS Score �.162 �.171 .041 .043

Step 6 .020 .018 1.64
Current Alcoholism Use �.125 �.126 �.130
Current Marijuana Use �.091 �.065 �.070
Antidepressant Use .008 .040 .011

Step 7 .019 .033 4.67a

Current CAPS Score �.257a �.317a

Step 8 .007 .036 1.75
HAM-D Depression Score .112

N � 244. The standardized regression coefficients � are provided for each step of the hierarchical regression.
Abbreviations as in Table 1.
ap 	 .05.

Table 3. Summary of a Simplified Hierarchical Regression Analysis on
Hippocampal Volume Adjusted for ICV

Independent
Variables �R2

Adjusted
R2 �F

Standardized
Coefficients �

Step 1 Step 2 Step 3

Step 1 .010 .002 1.2
Gender �.090 �.075 �.083
Current Alcohol Use �.050 �.051 �.063

Step 2 .012 .010 3.0
Lifetime CAPS Score �.112 .095

Step 3 .020 .026 4.8a

Current CAPS Score �.250a

N � 242 after exclusion of two current alcohol use outliers. The standard-
ized regression coefficients � are provided for each step of the hierarchical
regression.

Abbreviations as in Table 1.
ap 	 .05.
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smaller than that of participants who recovered from PTSD (mean
difference 6.5%, p 	 .05) and those who never developed PTSD
(mean difference 5.1%, p 	 .05). There was no significant difference
in mean adjusted hippocampal volume between participants who
had recovered from PTSD and participants who had never devel-
oped PTSD (p � .7). When we replicated the analyses including only
participants with trauma exposure, the results did not change in a
significant way.

Discussion

The main finding of this study is that current PTSD symptoms
were associated with smaller hippocampal volume, whereas life-
time PTSD symptoms were not. Participants with chronic PTSD had
on average a smaller hippocampus than those who recovered from
PTSD or never developed PTSD. The finding remained significant
after accounting for early life trauma, current and lifetime alcohol
use, depression, and treatment with antidepressants. This result
conflicts with our initial hypothesis that hippocampal volume is a

vulnerability marker for PTSD and as such should be associated with
both current and lifetime PTSD. Our results raise the possibility that
hippocampal volume is state-dependent and might vary over time,
consistent with findings in other pathologies.

This conclusion is supported by the aforementioned studies
showing that duration and severity of PTSD symptoms were
negatively correlated with hippocampal size (1,20) and that hip-
pocampal size increased after long-term paroxetine therapy in
PTSD patients (21). A growing literature in other diseases shows
that the hippocampus can change in response to exercise, a
variety of pharmacological interventions (42–50), and alcohol
abstinence (39). The conclusion is also supported by our previ-
ous finding in PTSD patients of reduced volume in the hip-
pocampal subfield CA3 and the dentate gyrus (51,52), areas that
are known to undergo neurogenesis in adulthood (10,53,54).
This would mean that the hippocampus can be damaged by
pathophysiological processes in those with current PTSD and
potentially recover from the associated volume loss, due to cel-
lular plasticity including neurogenesis.

The alternative interpretation of our findings modifies the con-
clusion of Gilbertson et al. (22) that smaller hippocampal volume is
a familial vulnerability factor for PTSD. Gilbertson et al. excluded
twin pairs when the combat-exposed brother had past but no
current PTSD; so they excluded recovered PTSD patients and com-
pared only chronic PTSD patients with PTSD-resistant trauma-ex-
posed veterans (55). Therefore, it is possible that PTSD symptoms
develop independent of hippocampal volume; yet only patients
with (familial) small hippocampal volume develop a chronic nonre-
mitting form of the disorder. This model would suggest that pa-
tients with normal-sized hippocampus recover after some time and
has implications for predicting treatment success in intervention
studies. From this perspective a smaller hippocampal volume could
be considered detrimental to recovery rather than a vulnerability
factor for developing PTSD.

It seems reasonable to hypothesize that — considering the role
of the hippocampus in learning, memory, and mood regulation—
PTSD patients with normal hippocampal volume have a greater
prospect of recovery than those with decreased volume before

Table 4. Comparison of the Groups

No
Trauma

Trauma,
No PTSD

Remitted
PTSD

Chronic
PTSD

p Value
of ANOVA

Number of Participants 95 (39%) 64 (26%) 41 (17%) 41 (17%)
Age 46.4 44.4 43.0 42.1 .094
Female Gender 15% 9% 20% 22% ns
Lifetime Alcohol Usea 25.56 32.82 34.68 37.47 ns
Current Alcohol Usea 14.15 13.21 11.20 7.87 ns
Current Marijuana Use 6% 5% 2% 17% .041
Early Life Trauma Reported 7% 21% 24% 47% 	.001
Yrs of Education 15.0 14.7 14.3 14.3 ns
Use of Antidepressants 12% 11% 20% 39% 	.001
ICV (mL) 1582 1606 1583 1569 ns
Depression Score (HAM-D) 4.3 5.2 7.2 14.1 	.001
Current CAPS Score 0 8.3 19.3 64.4 	.001
Lifetime CAPS Score 0 20.7 63.3 84.9 	.001
BL Hippocampal Volumea (mL) 5.292 5.343 5.367 5.006 .040
BL Hippocampal Volume, ICV-Adjusteda (mL) 5.300 5.300 5.374 5.044 .046

N � 241. The four groups were defined by trauma exposure and PTSD symptom severity. No Trauma: no Criterion
A event reported; Trauma, no PTSD: Criterion A event reported, lifetime and current CAPS score 	 40; Remitted PTSD:
Criterion A event reported, lifetime CAPS score � 40, current CAPS score 	 40; Chronic PTSD: Criterion A event
reported, lifetime and current CAPS score � 40. Data is presented as means and percentages.

ANOVA, analysis of variance; BL, bilateral; other abbreviations as in Table 1.
aDrinks/month.

Figure 3. Comparison of mean adjusted hippocampal volume in 241 Gulf
War veterans. The error bars show the SD. The numbers at the base of the
bars indicate the adjusted hippocampal volume in mm3. ICV, intracranial
volume; PTSD, posttraumatic stress disorder.
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www.sobp.org/journal



exposure. Pitman proposed that lower IQ, a known risk factor for
PTSD (56), might be a mediating link leading to PTSD (57).

Because our data are from a cross sectional study with measure-
ment of hippocampal volume at one time point only, we cannot
determine which of these two interpretations is correct. However,
the retrospective evaluation of PTSD symptoms allows differentiat-
ing the time course for the illness and points to the possibility that
the vulnerability hypothesis might be too simple. In this context
results of longitudinal studies in PTSD are of special interest. We
previously mentioned the study by Vermetten et al. (21), which
showed that smaller hippocampal size in patients with chronic
PTSD increased after paroxetine treatment over 36 – 48 weeks, al-
though there was no correlation with the improvement of the CAPS
score. In a longitudinal study Bonne et al. (58) found neither a
smaller hippocampus initially nor hippocampal volume loss over 6
months in 10 trauma survivors who developed PTSD relative to
those who did not. The authors discussed short length of trauma
exposure, older age at trauma exposure, and less chronicity of
symptoms as possible explanations. A small study in outpatients
demonstrated a smaller hippocampal volume in participants with
PTSD compared with control subjects but did not find a change in
volume after 4 months of clinically successful psychotherapy (59). In
that study the sample size of nine patients receiving psychotherapy
and the short time interval might have diminished the power to
detect a longitudinal effect. Another longitudinal study in abused
children by De Bellis et al. (60) could also not replicate previous cross
sectional findings of hippocampal volume reduction. Recent stud-
ies suggest that, although a history of childhood trauma is associ-
ated with reduced hippocampal volume in adults, this does not
become manifest until later in development (1,61,62). Interestingly,
Cardenas-Nicholson et al. (63) found progressive brain atrophy in
patients with chronic PTSD whose symptoms got worse, in contrast
to those whose symptoms improved, although these atrophic
changes did not involve the hippocampus. Taken together, the
existing longitudinal studies have limitations for elucidating the
role of hippocampal plasticity in PTSD, so that further research is
needed.

Our study included several other predictors of hippocampal
volume, of which only current alcohol use had a significant impact
on first observation. However, closer inspection revealed that this
relationship was driven by two participants with high current alco-
hol use. It has been described that chronic alcohol consumption to
this degree is associated with significant hippocampal volume loss
(64 – 66). Previously, we used the same methodology of measuring
hippocampal volume as used in this report in alcohol-dependent
individuals and found a smaller hippocampus as well as increases in
hippocampal volume during abstinence from alcohol (39). In this
cohort, however, the average for current drinks/month was 12 (SD
28) and the average for lifetime drinks/month was 31 (SD 40). There
have been no reports of such an amount of alcohol consumption
appreciably affecting hippocampal volume.

Furthermore, we did not find a significant effect of early life
trauma on hippocampal size. This is discrepant with other studies
that did find a negative effect of early life trauma on hippocampal
volume (67–71). There are developmental periods during which
areas of the brain are more sensitive; thus our variable “childhood
trauma” covering up to the age of 14 might be too broad a time
period (72).

Treatment with antidepressants for PTSD, anxiety, or depression
was reported by 17% of all participants. Malberg et al. (73) showed
in rodents that chronic administration of antidepressants increases
hippocampal neurogenesis. This was shown for different classes of
antidepressants (49). However, our analysis did not find an effect of

antidepressant treatment on hippocampal size. Although the
group of participants with chronic PTSD had a higher frequency of
antidepressive treatment, their hippocampal volume was smaller
compared with other groups. It is possible that the effect of chronic
PTSD on hippocampal volume in this sample masks the effects of
antidepressants.

Depression is another common sequela to traumatic stress ex-
posure, and therefore we considered its potential impact in our
multivariate analysis. We found that depression did not predict
hippocampal volume, irrespective of whether we controlled for
PTSD symptoms or not, which contrasts with meta-analysis studies
that showed multiple episodes and severity of depression can influ-
ence hippocampal size especially at advanced age (25–28). In con-
trast to these studies, our study involved a relatively young popu-
lation with relatively mild depression symptoms. This might have
limited our ability to detect a link between depression and hip-
pocampal volume.

The main limitation of our study is the cross sectional design,
which limits our ability to determine causality with respect to hip-
pocampal volume. Furthermore, we have limited generalizability
by having a sample of Gulf War Veterans. Additionally, we did not
measure family history of mood disorders and PTSD. Also history
and clinical scores rely on the subjective report of the individual
participant and may be biased by under- or over-reporting. It is
likely that current symptom status influences estimates of past
symptoms. However, the possible contamination effect of current
symptom status on reports of lifetime severity in all likelihood
would introduce a negative bias away from finding differences in
the relationship of hippocampal volume to past versus current
PTSD. In a previous study we showed that the volume loss in PTSD is
primarily focused in the CA3 subfield (51); therefore measurements
of the whole hippocampus might be less precise than measure-
ments of hippocampal subfields. However, it remains unclear
whether adult neurogenesis accounts for the whole change in hip-
pocampal volume, because neurogenesis has been demonstrated
in only a relatively small portion of the hippocampus and because
there are many different cells in the hippocampus (74). In the future,
well-designed longitudinal studies that follow high-risk popula-
tions before and after trauma exposure and follow fluctuations in
symptom levels will be needed to establish a time course of possi-
ble hippocampal change in humans and specifically to advance our
understanding of the biological processes underlying PTSD.

In conclusion, our data in more than 200 well-characterized
participants suggest that current presence of chronic PTSD symp-
toms rather than remitted PTSD is associated with a smaller hip-
pocampus. This raises the possibility of recovery from hippocampal
volume loss in PTSD.
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