17,878 research outputs found
An Overview of Moessbauer Mineralogy at Gusev Crater, Mars
The Mars Exploration Rover (MER) Spirit landed on the plains of Gusev Crater on 4 January 2004 [1]. The scientific objective of the Moessbauer (MB) spectrometer on Spirit is to provide quantitative information about the distribution of Fe among its oxidation and coordination states, identification of Fe-bearing phases, and relative distribution of Fe among those phases. The speciation and distribution of Fe in Martian rock and soil constrains the primary rock types, redox conditions under which primary minerals crystallized, the extent of alteration and weathering, the type of alteration and weathering products, and the processes and environmental conditions for alteration and weathering.We discuss the Fe-bearing phases detected by Spirit s MB instrument during its first 540 sols of exploration [2,3]. Spirit roved eastward across the plains from its landing site to the Columbia Hills during the first approx.150 sols. Rocks are unweathered to weakly weathered olivine basalt, with olivine, pyroxene (Ol > Px), magnetite (Mt), and minor hematite (Hm) and nanophase ferric oxide (npOx) as their primary Fe-bearing minerals. Soils are generally similar basaltic materials, except that the proportion of npOx is much higher (up to approx.40%). NpOx is an oct-Fe3+ alteration product whose concentration is highest in fine-grained soils and lowest in rock interiors exposed by grinding with the Rock Abrasion Tool (RAT). Spirit explored the lower slopes of the Columbia Hills (West Spur) during sols approx.150-320. West Spur rocks are highly altered, even for interior surfaces exposed by grinding (Fe3+/FeT approx.0.56-0.84). High concentrations of npOx, Hm, and Mt are present. One rock (Clovis) contains significant quantities of goethite (alpha-FeOOH; approx.40% of total Fe). The detection of goethite is very significant because it is a mineralogical marker for aqueous alteration
Manufacturing Performance Reporting For Continuous Quality Improvement
Recently many plants have implemented the new manufacturing strategy of continuous quality improvement. The central hypothesis in this paper is that the implementation of a policy of continuous quality improvement results in a shift in the management control system. This article tests this hypothesis by examining the shop floor reporting policies of forty-two plants located in the United States. The paper documents that the extent of information concerning the current status of manufacturing, such as charts on defect rates or schedule compliance and productivity information, provided to workers on the shop floor is positively related to the implementation of continuous quality improvement programs
Novel virus dynamics in an Emiliania huxleyi bloom
Diel studies of an Emiliania huxleyi bloom within a mesocosm revealed a highly dynamic associated viral community, changing on small times scales of hours
Helium-3 and Helium-4 acceleration by high power laser pulses for hadron therapy
The laser driven acceleration of ions is considered a promising candidate for
an ion source for hadron therapy of oncological diseases. Though proton and
carbon ion sources are conventionally used for therapy, other light ions can
also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the
same penetration depth as 250 MeV protons, helium ions require only 250 MeV per
nucleon, which is the lowest energy per nucleon among the light ions. This fact
along with the larger biological damage to cancer cells achieved by helium
ions, than that by protons, makes this species an interesting candidate for the
laser driven ion source. Two mechanisms (Magnetic Vortex Acceleration and
hole-boring Radiation Pressure Acceleration) of PW-class laser driven ion
acceleration from liquid and gaseous helium targets are studied with the goal
of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy
requirements. We show that He3 ions, having almost the same penetration depth
as He4 with the same energy per nucleon, require less laser power to be
accelerated to the required energy for the hadron therapy.Comment: 8 pages, 3 figures, 1 tabl
Magnetite in Martian Meteorite Mil 03346 and Gusev Adirondack Class Basalt: Moessbauer Evidence for Variability in the Oxidation State of Adirondack Lavas
The Moessbauer spectrometers on the Mars Exploration Rovers Spirit (Gusev crater) and Opportunity (Meridiani Planum) have returned information on the oxidation state of iron, the mineralogical composition of Fe-bearing phases, and the distribution of Fe among oxidation states and phases [1,2,3]. To date, ~100 and ~85 surface targets have been analyzed by the Spirit and Opportunity spectrometers, respectively. Twelve component subspectra (8 doublets and 4 sextets) have been identified and most have been assigned to mineralogical compositions [4]. Two sextet subspectra result from the opaque and strongly magnetic mineral magnetite (Fe3O4 for the stoichiometric composition), one each for the crystallographic sites occupied by tetrahedrally-coordinated Fe3+ and by octahedrally-coordinated Fe3+ and Fe2+. At Gusev crater, the percentage of total Fe associated with magnetite for rocks ranges from 0 to ~ 35% (Fig. 1) [3]. The range for soils (~5 to ~12% of total Fe from Mt, with one exception) is narrower. The ubiquitous presence of Mt in soil firmly establishes the phase as the strongly magnetic component in martian soi
Some remarks on the visible points of a lattice
We comment on the set of visible points of a lattice and its Fourier
transform, thus continuing and generalizing previous work by Schroeder and
Mosseri. A closed formula in terms of Dirichlet series is obtained for the
Bragg part of the Fourier transform. We compare this calculation with the
outcome of an optical Fourier transform of the visible points of the 2D square
lattice.Comment: 9 pages, 3 eps-figures, 1 jpeg-figure; updated version; another
article (by M. Baake, R. V. Moody and P. A. B. Pleasants) with the complete
solution of the spectral problem will follow soon (see math.MG/9906132
A New N-terminal Recognition Domain in Caveolin-1 Interacts with Sterol Carrier Protein-2 (SCP-2)
Although plasma membrane domains, such as caveolae, provide an organizing principle for signaling pathways and cholesterol homeostasis in the cell, relatively little is known regarding specific mechanisms, whereby intracellular lipid-binding proteins are targeted to caveolae. Therefore, the interaction between caveolin-1 and sterol carrier protein-2 (SCP-2), a protein that binds and transfers both cholesterol and signaling lipids (e.g., phosphatidylinositides and sphingolipids), was examined by yeast two-hybrid, in vitro binding and fluorescence resonance energy transfer (FRET) analyses. Results of the in vivo and in vitro assays identified for the first time the N-terminal amino acids (aa) 1−32 amphipathic α helix of SCP-2 functionally interacted with caveolin-1. This interaction was independent of the classic caveolin-1 scaffolding domain, in which many signaling proteins interact. Instead, SCP-2 bound caveolin-1 through a new domain identified in the N-terminal domain of caveolin-1 between aa 34−40. Modeling studies suggested that electrostatic interactions between the SCP-2 N-terminal aa 1−32 amphipathic α-helical domain (cationic, positively charged face) and the caveolin-1 N-terminal aa 33−59 α helix (anionic, negatively charged face) may significantly contribute to this interaction. These findings provide new insights on how SCP-2 enhances cholesterol retention within the cell as well as regulates the distribution of signaling lipids, such as phosphoinositides and sphingolipids, at plasma membrane caveolae
Fractional Fokker-Planck Equation for Fractal Media
We consider the fractional generalizations of equation that defines the
medium mass. We prove that the fractional integrals can be used to describe the
media with noninteger mass dimensions. Using fractional integrals, we derive
the fractional generalization of the Chapman-Kolmogorov equation (Smolukhovski
equation). In this paper fractional Fokker-Planck equation for fractal media is
derived from the fractional Chapman-Kolmogorov equation. Using the Fourier
transform, we get the Fokker-Planck-Zaslavsky equations that have fractional
coordinate derivatives. The Fokker-Planck equation for the fractal media is an
equation with fractional derivatives in the dual space.Comment: 17 page
- …