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A New N-Terminal Recognition Domain in Caveolin-1 Interacts with Sterol Carrier
Protein-2 (SCP-2)†

Rebecca D. Parr,‡ Gregory G. Martin,§ Heather A. Hostetler,§ Megan E. Schroeder,‡ Kiran D. Mir,‡,| Ann B. Kier,‡

Judith M. Ball,*,‡ and Friedhelm Schroeder§

Department of Pathobiology, Texas A&M UniVersity, TVMC, College Station, Texas 77843-4467, and Department of Physiology
and Pharmacology, Texas A&M UniVersity, TVMC, College Station, Texas 77843-4466

ReceiVed February 7, 2007; ReVised Manuscript ReceiVed April 27, 2007

ABSTRACT: Although plasma membrane domains, such as caveolae, provide an organizing principle for
signaling pathways and cholesterol homeostasis in the cell, relatively little is known regarding specific
mechanisms, whereby intracellular lipid-binding proteins are targeted to caveolae. Therefore, the interaction
between caveolin-1 and sterol carrier protein-2 (SCP-2), a protein that binds and transfers both cholesterol
and signaling lipids (e.g., phosphatidylinositides and sphingolipids), was examined by yeast two-hybrid,
in Vitro binding and fluorescence resonance energy transfer (FRET) analyses. Results of thein ViVo and
in Vitro assays identified for the first time the N-terminal amino acids (aa) 1-32 amphipathicR helix of
SCP-2 functionally interacted with caveolin-1. This interaction was independent of the classic caveolin-1
scaffolding domain, in which many signaling proteins interact. Instead, SCP-2 bound caveolin-1 through
a new domain identified in the N-terminal domain of caveolin-1 between aa 34-40. Modeling studies
suggested that electrostatic interactions between the SCP-2 N-terminal aa 1-32 amphipathicR-helical
domain (cationic, positively charged face) and the caveolin-1 N-terminal aa 33-59 R helix (anionic,
negatively charged face) may significantly contribute to this interaction. These findings provide new insights
on how SCP-2 enhances cholesterol retention within the cell as well as regulates the distribution of signaling
lipids, such as phosphoinositides and sphingolipids, at plasma membrane caveolae.

Increasing evidence indicates that cholesterol found at the
cell-surface plasma membrane (PM) is not randomly dis-
tributed but instead organized into both transbilayer (1, 2)
and lateral (3, 4) cholesterol-rich (and/or sphingolipid-rich)
domains that adopt a unique, liquid-ordered structural
organization (4-7). It has been postulated that this self-
assembling property of cholesterol (and also sphingolipids)
into domains in turn forms the structural basis for selective
membrane protein organization (8). Support for this hypo-
thesis is from numerous studies demonstrating that many PM
proteins are functionally organized into lipid rafts and/or
caveolae, a subfraction of lipid rafts that have proven to be
a remarkably stable structural and functional entity (9, 10).
Diverse processes, such as transmembrane signal transduction
(e.g., eNOS, estrogen, and insulin), the action of microbial
(e.g., cholera toxin) and viral (e.g., NSP4) toxins, potocytosis,
and microbial (viruses, bacteria, and protozoa) entry into
cells, are mediated through PM lipid rafts/caveolae (reviewed
in refs4, 11, and12). Depletion of cholesterol from the PM
lipid rafts/caveolae disrupts these functions. Because of these

findings, it has become increasingly important to resolve how
cholesterol is transported to lipid rafts/caveolae and how the
distribution of cholesterol is regulated within these domains.

Because of the importance of cholesterol to membrane
domains and other cell functions, it is not surprising that
mammalian cells have evolved multiple pathways for
cholesterol entry/efflux. First, unidirectional uptake of cho-
lesteryl ester and cholesterol is mediated by the classic low-
density lipoprotein (LDL)1 receptor/lysosomal endocytic
pathway (13). Second, unidirectional “selective cholesterol
uptake” is mediated by high-density lipoprotein (HDL)
binding to scavenger receptor B1 (SRB1) at PM. SRB1 lacks
a consensus caveolin “scaffold binding domain” (14) and is
localized not only in caveolae (e.g., fibroblasts and endo-
thelial cells) but also in lipid rafts of caveolin-1-deficient

† This work was supported in part by the USPHS National Institutes
of Health GM31651 (to F.S. and A.B.K.) and GM62326 (to J.M.B.).

* To whom correspondence should be addressed: Department of
Pathobiology, Texas A&M University, TVMC, College Station, TX
77843-4467. Telephone: (979) 845-7910. Fax: (979) 845-9231.
E-mail: jball@cvm.tamu.edu.

‡ Department of Pathobiology.
§ Department of Physiology and Pharmacology.
| Current address: Department of Internal Medicine, University of

Texas Southwest Medical Center, Dallas, TX 75390.

1 Abbreviations: aa, amino acids, Cav1, full-length caveolin; ca-
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cells (e.g., hepatocytes) (14-17). Once bound to SRB1, HDL
cholesteryl ester is transferred to the PM lipid rafts/caveolae,
internalized by an unresolved, nonendocytic process, and
undergoes hydrolysis by nonlysosomal, neutral esterases to
free cholesterol (17, 18). Third, unidirectional cholesterol
efflux occurs via the ATP-binding cassette transporter A1
(ABCA1) (19-21), which localizes to lipid rafts/caveolae
(22, 23). ABCA1 binds apoprotein-1 (apoA1) to enhance
phospholipid efflux, followed by ABCA1-independent cho-
lesterol transfer to the phospholipid containing apoA1, which
then becomes HDL (21, 24). Fourth, the bidirectional
cholesterol uptake/efflux pathway in which HDL binds to
SRB1 is localized in lipid rafts/caveolae rafts and donates/
takes up cholesterol by a process that is as yet unclear (15,
16, 21). Although caveolin-1 expression is associated with
increased cholesterol transport to caveolae and increased
cholesterol efflux to HDL (14, 17, 25), SRB1 localization
in caveolae is not required for cholesterol uptake/efflux (15).
While there is considerable evidence that the multidrug
resistance transporter P-glycoprotein (P-gp) also participates
in SRB1-mediated cholesterol transfer to/from bound HDL,
it remains unclear whether P-gp resides in caveolae (26), in
noncaveolar lipid rafts (27), or in an intermediate density
membrane microdomain distinct from caveolae and classical
lipid rafts (28). Many of these proteins appear to indirectly
regulate/alter cholesterol flux between the PM and HDL by
acting as phospholipid flippases (e.g., ABCA1, P-gp) (21,
24, 28, 29). Photo-cross-linking and immunoprecipitation
studies show that (i) caveolin-1 (30, 31) but not ABCA1
(24) or SRB1 (14) directly binds cholesterol, (ii) ABCA1
and SRB1 but not caveolin-1 directly bind HDL (21, 22),
(iii) while neither ABCA1, P-gp, or SRB1 contain a
caveolin-1 “scaffold binding domain”, ABCA1 may interact
directly with caveolin-1 (22). Thus, when caveolin-1 is
directly bound, the ABCA1 may provide a scaffolding
platform for cholesterol efflux through either the SRB1 or
ABCA1 pathways.

Both vesicular and protein-mediated pathways appear to
contribute to intracellular trafficking of cholesterol to and
from lipid rafts/caveolae (4, 17, 32-34). At least three
cholesterol binding proteins may be involved in protein-
mediated cholesterol trafficking through the cytoplasm:
caveolin-1, sterol carrier protein-2 (SCP-2), and liver fatty
acid binding protein (L-FABP) (4, 35, 36). Bidirectional flux
of free cholesterol and unidirectional uptake of cholesterol
ester is thought to be mediated by cytoplasmic transport
complexes of caveolin-1, cholesterol (or cholesterol ester),
and one or more chaperone proteins (cyclophilin A, cyclo-
philin 40, heat-shock protein 56, and/or annexin II). The
mechanism(s) whereby these complexes dock/interact with
PM caveolae appears to involve the CD44 receptor and
cytoskeletal proteins (17). In contrast to caveolin-1, the other
cholesterol binding proteins (L-FABP and SCP-2) have been
reported to form simple molecular complexes with choles-
terol (but not cholesteryl ester) to (i) enhance cholesterol
uptake (SCP-2. L-FABP), (ii) transfer cholesterol between
membranes with which they interact (SCP-2. L-FABP),
and (iii) transfer cholesterol into bile (L-FABP) (35, 37-
43). Notably, SCP-2 expression not only enhances cholesterol
uptake (44) but also stimulates intracellular cholesterol
esterification (45, 46) while concomitantly inhibiting cho-
lesterol efflux to HDL (33). These findings suggest that

caveolin-1 and SCP-2 may have antagonistic effects depend-
ing upon the cell context. As of yet, relatively little is known
about the mechanism(s) whereby caveolin-1/cholesterol/
chaperone, L-FABP cholesterol, and SCP-2 cholesterol
complexes dock/interact with PM lipid rafts/caveolae.

Caveolin-1-interacting proteins have been shown to bind
the caveolin-1 scaffolding domain (CSD) that resides in
amino acids (aa) 80-101 of the central region of caveolin-1
(47). The caveolin-1 binding domain (CBD) is comprised
of the recognition sequenceΦXΦXXXX Φ or ΦXXXX-
ΦXXΦ, whereΦ is an aromatic residue (Trp, Phe, or Tyr)
(12, 48, 49). Recent data from our laboratory show SCP-2
is in close proximity to caveolin-1 [i.e., 48( 4 Å, as
determined by fluorescence resonance energy transfer (FRET)
and immunogold electron microscopy], suggesting a direct
interaction with caveolin-1 (50). Yeast two-hybrid and co-
immunoprecipitation assays confirm these findings (50).
However, examination of the SCP-2 aa sequence reveals that
this protein lacks a consensus caveolin-1 binding domain
(50). The purpose of the present investigation was to use a
series of caveolin-1 mutants and yeast two-hybrid assays to
determine (i) if SCP-2 interacts with caveolin-1 through the
scaffolding domain and, if not, (ii) whether SCP-2 interacts
with another caveolin-1 domain. These studies contribute
significantly to our understanding of how SCP-2 participates
in intracellular cholesterol trafficking and/or cholesterol
uptake/efflux through caveolae.

MATERIALS AND METHODS

Materials. CNBr-activated Sepharose 4B beads were
obtained from Amersham Biosciences (Piscataway, NJ).
SCP-2 and caveolin-1 peptide-specific antibodies were
generated in rabbits in our laboratory as described (50-53).
Rabbit anti-human caveolin-1 was purchased from Jackson
Immunoresearch Labs, Inc. (West Grove, CA) or Transduc-
tion Labs (San Diego, CA). Bound antibodies were detected
by horseradish peroxidase (HRP)-labeled goat anti-rabbit IgG
(Kirkegaard and Perry Laboratories, Inc., Gaithersburg, MD
or Pierce, Rockford, IL). Total protein was quantitated using
the BCA protein assay kit (Pierce). Dulbecco’s modified
Eagle medium (DMEM) was from Gibco (Grand Island,
NY). Fetal bovine serum (FBS), glutamine, penicillin-
streptomycin (100µg/mL), and nonessential amino acid (1X)
were from Sigma (St. Louis, MO).

Mammalian Cell Culture.MDCK cells were obtained from
ATCC (Rockville, MD) and maintained in DMEM supple-
mented with 10% FBS, glutamine (2 mM), penicillin-
streptomycin (100µg/mL), and nonessential amino acid (1X).
Because of the high expression level of caveolin-1 in MDCK
cells (53), MDCK lysates were prepared as a source of
caveolin-1 antigen. Murine L cells (L arpt-tk-) were cultured
as previously described (54).

Yeast Strains for Two-Hybrid Assay. Saccharomyces
cereVisiae strain MaV203 (MATR, leu2-3,112, trp1-901,
his3∆200, ade2-101, gal4∆, gal80∆, SPAL10::URA3,
GAL1::lacZ, HIS3uas gal1::HIS3@LYS2, can1r, cyh2r) was
used for all two-hybrid analyses (55). A collection of yeast
strains that contain plasmid pairs expressing fusion proteins
with a spectrum of interaction strengths [pPC97 (GAL4-DB,
LEU2), pPC97-CYH2S, and pPC86 (GAL4-AD, TRP1)]
were used as controls (53, 56-59). The control plasmids

8302 Biochemistry, Vol. 46, No. 28, 2007 Parr et al.



pDBleu and pEXP-AD507 contain only the Gal4 DNA-
binding domain (BD) and the Gal4 activating domain (AD),
respectively.

The S. cereVisiae yeast strain InVSc1 (MATR his3-∆1,
leu2, trp1-289, ura3-52; Invitrogen, Carlsbad, CA) was
used to induce the production of full-length caveolin-1,
mutant caveolin-1, and SCP-2 proteins.

Construction of Plasmids.SCP-2 and full-length caveo-
lin-1 cDNA were cloned into the Invitrogen Gateway
Destination vectors pDEST22 and pDEST32 (ProQuest Two-
Hybrid System with Gateway Technology Manual, Invitro-
gen Life Technologies, Inc.) as previously described (53, 55).
The deletion mutant clones of caveolin-1, caveolin 1-156,
60-178,∆60-100, and∆83-123, were constructed by site-
directed mutagenesis using the primers described to the right
of the schematic representation of the deletion mutants
(Figure 1).

All plasmid manipulations were performed according to
standard protocols in theEscherichia colistrains DH5R
(ProQuest Two-Hybrid System with Gateway Technology
Manual, Invitrogen Life Technologies, Inc.). The polymerase
chain reaction (PCR) products were directionally cloned into
the Gateway System entry vector, pENTR11 (Invitrogen),
sequence verified, subcloned into the destination vectors of
the Gateway Expression System, pDEST 22 (Gal4 activation
domain [AD]-X) and pDEST32 (Gal4 DNA-binding domain
[BD]-Y). Briefly, 300 ng of the pENTR11-SCP-2/caveolin-1
plasmids were incubated with 300 ng of the destination
vector, pDEST22 or pDEST32, LR buffer, TE (1X), and the
LR Clonase Enzyme Mix (Invitrogen). The resultant clones
were transformed into DH5R and plated onto LB plates with
100 µg/mL ampicillin or 7 µg/mL gentamycin. After
amplification, recombinant plasmids were extracted using the
Wizard Miniprep kit (Promega, Madison, WI), restriction-
enzyme-digested withEcoRV, KpnI, or XhoI (Promega), and
sequence-verified. Fusion protein expression levels were
monitored by Western blot analyses.

Expression of SCP-2, CaVeolin-1, and Mutant CaVeolin-1
in Yeast.The entry level clones (pENTR11) used to create
the yeast two-hybrid expression clones were also employed
to introduce the sequences encoding SCP-2, caveolin-1, and
mutant caveolin-1 proteins into the inducible yeast expression
plasmid, pY52DEST (Invitrogen), as described above. Trans-

formants were first grown on CSMUra- plates, transferred
to liquid CSMUra-, and induced with galactose in YPAG
[yeast extract, peptone, and 2% galactose (Difco)] medium
to express full-length SCP-2 and caveolin-1 or the four
deletion caveolin-1 mutants. Briefly, cells were grown in
liquid CSMUra- medium at 30°C for 24 h, washed and
resuspended at an OD600 of 0.5 in YPAG, and incubated at
30°C for 24 h. Yeast protein cell lysates were prepared using
the Zymo Yeast Protein Extraction kit (Zymo Research,
Orange, CA) as previously described (50) and used in the
binding and Western blot assays to detect SCP-2, caveolin-
1, or mutant caveolin-1 proteins. Briefly, approximately 1
× 106 cells were pelleted; Y-lysis buffer and zymolase were
added; and the samples were incubated at 37°C for 1 h.
The cells were centrifuged at 400 g for 5 min, and
supernatants were removed. The pellets were resuspended
in phosphate-buffered saline (PBS) with protease inhibitors
(100µM AEBSF, 80 nM Aprotinin, 5µM Bestatin, 1.5µM
E-64, 2 µM Leupeptin, 1µM Pepstatin A, and 100µM
PMSF, Calbiochem-Novabiochem Corp., San Diego, CA).
The total protein in each pellet was quantitated using the
BCA protein assay kit (Pierce). Approximately 10µg of each
pellet was separated on 12% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE), trans-
ferred to nitrocellulose, and probed with rabbit polyclonal
SCP-2 or caveolin-1 antibodies (50, 53). The primary
antibodies were detected using goat anti-rabbit-HRP antibod-
ies (Pierce) followed by the addition of the Super Signal
Pico West Chemiluminescent Substrate (Pierce), and bands
were visualized using X-OMAT film (Kodak).

Yeast Two-Hybrid Screening. S. cereVisiaestrain MaV203
(MATR, leu2-3,112, trp1-901, his3∆200, ade2-101,
gal4∆, gal80∆, SPAL10::URA3, GAL1::lacZ, HIS3uas gal1::
HIS3@LYS2, can1r, cyh2r) was used to test for protein-
protein interactions of SCP-2 and either caveolin-1 or the
mutants of caveolin-1 (58, 59). A panel of MaV103 (MATR)
control strains containing the same genotype as MaV203
expressing a GAL4 DNA-binding fusion protein (DB-X)
and a GAL4 transcription activating protein (AD-Y) with a
spectrum of interaction strengths was replica-plated onto
assay plates (49-52). The control vectors were pPC97
(GAL4-DB, LEU2), pPC97-CYH2S, and pPC86 (GAL4-AD,
TRP1). pDBleu and pEXP-AD507 contain only the Gal4

FIGURE 1: Linear schematic of full-length and deletion mutants of caveolin-1. The PCR fragments were produced using the forward and
reverse primers listed to the right of each construct and cloned into the DNA-binding domain plasmid, pD22, and the activation-domain
plasmid, pD32, of the ProQuest Yeast Two-Hybrid System with Gateway Technology. The full-length clone of caveolin-1 encodes 178
amino acids. One 3′ deletion mutant, Caveolin-1-156, one 5′ deletion mutant, Cav 60-178, and two internal deletion mutants, Cav∆60-
100 and∆83-123, were produced as described in the Materials and Methods.
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DNA-binding domain (BD) and the Gal4 activating domain
(AD), respectively. All plasmid manipulations were per-
formed according to standard protocols for theE. coli strains
DH5R (48, 53, 54). MaV203 yeast were transformed by a
modified lithium acetate (LiAc) procedure as previously
described (56-59). Briefly, S. cereVisiae MaV203 were
grown in YPAD overnight at 30°C, diluted to an OD600 of
0.5, and incubated at 30°C with shaking to an OD600 of 2.
The cells were pelleted, washed with distilled H2O, resus-
pended in 1 mL of 100 mM LiAc, pelleted, and resuspended
in 0.4 mL of 100 mM LiAc, and 50µL aliquots were
pelleted. The following solutions were added in order: 240
µL of 50% PEG (Mr ) 3350), 36µL of 1 M LiAc, 25 µL of
salmon sperm DNA (2 mg/mL), 50µL of dH2O, and 100 ng
of each plasmid DNA.

Transformants were grown at 30°C for 3 days on com-
plete synthetic medium lacking leucine and tryptophan
(CSMLeu-Trp-) to identify colonies containing both plas-
mids. To determine the two-hybrid-dependent transcription
activation by SCP-2 and caveolin-1 or mutants of caveolin-
1, the induction of the reporter genes,URA3andHIS3, was
evaluated by monitoring the yeast growth patterns on
CSMLeu-Trp-Ura-, CSMLeu-Trp- + 0.2% 5FOA, and
CSMLeu-Trp-His- + 3AT (12.5, 50, and 100 mM 3AT)
(50, 53). Activation of the LacZ promoter was detected
qualitatively using the substrate X-gal (5-bromo-4-chloro-
3-indolyl-â-D-galactopyranoside). To quantitatively measure
â-galactosidase activity, chlorophenol red-â-D-galactopyra-
noside (CPRG) was used as a substrate (50). To ensure that
the DB-X or AD-Y fusion proteins do not function as
transcription activators, yeast were transformed with the
individual fusion constructs and evaluated for growth on all
of the media described above.

Western Blot Assays.The colonies that appeared positive
for protein-protein interactions as determined by the phe-
notypic growth patterns were grown in liquid CSMLeu-Trp-,
and yeast protein extracts were prepared using the Zymo
Yeast Protein Extraction kit (Zymo Research, Orange, CA).
In brief, cells were grown in YPAD medium overnight at
30 °C, and 1× 106 cells were pelleted, lysed with zymolase,
resuspended in PBS at pH 7.2 containing protease inhibitors
(above), and quantified by BCA (Pierce). All lysates were
separated by 12% SDS-PAGE, electroblotted onto nitrocel-
lulose membranes, and probed with SCP-2 or caveolin-1
peptide-specific antibodies and HRP-conjugated antibodies
as previously described (50, 53, 55).

Protein Purification.The human recombinant mature 13
kDa SCP-2 and 15 kDa pro-SCP-2 were purified as described
earlier (60). PEX 5C was generously provided by Dr. Jeremy
Berg (Johns Hopkins University).

In Vitro CaVeolin-1 SCP-2 Binding Assay.To confirm the
interactions of caveolin-1 and 13 kDa SCP-2 determined by

the yeast two-hybrid assay, anin Vitro binding assay was
developed. Synthetic peptides corresponding to caveolin-1
residues 2-31, 19-40, 34-55, 76-101, and 161-178
(Table 1), a peptide corresponding to mature 13 kDa SCP-2
aa 1-32 (SCP-21-32), a peptide wherein residue aa20L was
mutated to E (SCP-21-32E20), and a peptide corresponding to
the 20 aa presequence of pro-SCP-2 (pro-SCP-21-20) present
in 15 kDa pro-SCP-2 (61, 62) were synthesized as described
earlier (Table 1) (63-65). SCP-2 residues 1-32 contain the
N-terminal amphipathicR-helical region of mature 13 kDa
SCP-2 and represent the membrane interaction domain of
SCP-2 (63-65).

The peptides described above were attached to CNBr-
activated Sepharose 4B beads as recommended by the
manufacturer (Amersham Biosciences Corp., Piscataway,
NJ). Aliquots (2 mg of total protein each) of InVSc-1 (does
not express caveolin-1) or MDCK lysate (expresses caveolin-
1) were incubated with 50µL of a 50% slurry Sepharose
4B or Sepharose 4B-SCP-21-32 overnight at 4°C with gentle
mixing. The beads were pelleted by centrifugation, washed
3 times with wash buffer (10 mM Tris at pH 7.5 and 0.5 M
NaCl), and resuspended in PBS containing protease inhibitors
(above). Half of each sample was separated by 12% SDS-
PAGE, transferred to nitrocellulose membranes, and probed
with rabbit anti-caveolin-1 in Western blot assays as
described above. Interaction(s) of caveolin-1 mutants with
SCP-21-32 were monitored also with full-length caveolin-1,
caveolin-1-156, and caveolin-160-178 that were expressed
in InVSc1 yeast.

To verify the specificity of the reactivity of purified SCP-2
with Cav19-40- and Cav34-55-bound Sepharose beads (Figure
5B), the integrated density value (IDV) for each band was
determined using a Fluorochem 8000 Advanced Imager
(Alpha Innotech Corp., San Leandro, CA). The average value
after background correction was plotted at different concen-
trations of purified SCP-2 and a constant peptide concentra-
tion.

Role of pro-SCP-2 N-Terminal Presequence for Targeting
to Peroxisomes: In Vitro FRET.To determine the relative
affinity of the C-terminal peroxisomal targeting sequence 1
(PTS-1) present in both SCP-2 and pro-SCP-2, the interaction
of these proteins with PEX 5C (peroxisomal receptor for the
PTS-1) was examined by FRET. Recombinant PEX 5C was
covalently labeled with Cy3 (fluorescence donor), while
SCP-2 and pro-SCP-2 were labeled with Cy5 (fluorescence
acceptor) by use of a Fluorolink-antibody Cy3 and Cy5-
labeling kit (Amersham Biosciences) as indicated by the
instructions of the manufacturer. A fixed amount of donor
(10 nM PEX 5C) was incubated with increasing amounts of
acceptor (Cy5-SCP-2 or Cy5-pro-SCP-2) in PBS at pH 7.4
and 24°C. Cy3 was excited at 550 nm, and emission was
scanned from 560 to 700 nm using a PC1 photon-counting

Table 1: Synthetic Peptide Amino Acid Composition and Distribution

peptides Nf C aa distribution

Cav1 aa 2-31 SGGKYVDSEGHLYTVPIREQGNIYKPNNKA 7C, 7P, 8H
Cav1 aa 19-40 EQGNIYKPNNKAMADELSEKQ 7C, 6P, 4H
Cav1 aa 34-55 DELSEKQVYDAHTKEIDLVNRD 11C, 4P, 6H
Cav1 aa 76-101 EGTHSFDGIWKASFTTFTVTKYWF 4C, 9P, 7H
Cav1 aa 161-178 IEKQLNIRVNSFIKGVAE 4C, 4P, 8H
SCP-2 aa 1-32 SSASDGFKANLVFKEIEKKLEEEGEQFVKKIG 13C, 5P, 8H
SCP-2 aa 1-32E20 SSASDGFKANLVFKEIEKKEEEEGEQFVKKIG 14C, 5P, 7H
Pro-SCP-2 aa 20-0 MGFPEAASSFRTHQIEAVPT 5C, 3P, 12H

8304 Biochemistry, Vol. 46, No. 28, 2007 Parr et al.



spectrofluorometer (ISS, Inc., Champaign, IL). The data were
corrected for background (buffer only, donor only, and
acceptor only). Binding affinities were calculated from the
quenching of Cy3 fluorescence intensity (Fo-F) at 570 nm
with an increasing acceptor concentration as described earlier
(66). The intermolecular distance was calculated as shown
previously using the known critical distance for 50%
efficiency (i.e., 50 Å) for the Cy3/Cy5 FRET pair (67).

Laser Scanning Confocal Microscopy (LSCM) of SCP-2
Colocalization with CaVeolae/Lipid Raft Marker GM1 at the
PM of LiVing Cells.Murine L cells (L arpt-tk-) were seeded
onto Lab-Tek chambered cover glass slides as previously
described (54). Culture medium was replaced with 0.5 mL
of serum-free media containing 0.7µg of protein (Cy5-
labeled SCP-2 or Cy5-labeled pro-SCP-2 prepared as de-
scribed above) per chamber well and incubated at 37°C and
5% CO2 in a humidified chamber for 1 h. Thereafter, 1 mL
of complete media (containing serum) was added to each
chamber well, and cells were incubated for an additional 2
h as described above. Cells were washed with 1 mL of cold
PBS 4 times and, after the final wash, incubated at 4°C for
10 min. PBS wash was replaced with cold PBS containing
0.4 µg/mL cholera toxin B-AF488 (Invitrogen Corp.), and
cells were incubated at 4°C for an additional 5 min before
imaging. Cholera toxin B is a select marker for ganglioside
M1 (GM1) in caveolae/lipid rafts (7, 51). LSCM was
performed with a MRC-1024 fluorescence imaging system
(Bio-Rad, Hercules, CA) equipped with an Axiovert 135
microscope and X63 Plan-Fluor oil immersion objective,
N.A.1.45 (Zeiss, Carl Zeiss, Inc., Thornwood, NY). Alex-
aFluor 488 and Cy5 probes were excited at 488/647 lines
with a krypton-argon laser (5 mW, all lines) (Coherent,
Sunnyvale, CA) set at 10% scan strength, and emission was
simultaneously recorded by separate photomultipliers after
passing through a 540/30 or 680/32 emission filter, respec-
tively, under manual gain and black level control.

RESULTS

SCP-2 Interacts with CaVeolin-1 in a Yeast Two-Hybrid
Assay.Although SCP-2 lacks a CBD consensus sequence
for interacting with the CSD, the possibility was considered
that SCP-2 may still interact through some other interaction
with this domain or with another region of caveolin-1. The
sequences encoding SCP-2, full-length caveolin-1 (caveolin-1
1-178), and caveolin-1 deletion mutants (Figure 1) were
cloned into the ProQuest (Invitrogen) vectors pDEST32 and

pDEST22 to produce fusion proteins encoding the GAL4
DNA-binding domain and activating domain, respectively.
The resultant plasmids were co-transformed into yeast
(MaV203) and initially grown on CSMLeu-Trp- plates with
transformation efficiencies of∼2-5 × 106 transformants/
µg of plasmid DNA (data not shown). These data are in the
range of the standard efficiencies of greater than 1× 106

transformants/µg of plasmid DNA (49).

Co-transformed yeast were monitored for growth on media
lacking specific aa and incorporating specific growth inhibi-
tors. Four phenotypes, His+(3ATR), â-gal, Ura+, and 5FOAS,
were used to assess the activation of the chromosomally
integrated reporter genes,HIS3, URA3, andLacZ. The control
yeast that are supplied with the ProQuest Two-Hybrid System
and the transformants grew on plates with CSMLeu-Trp-,
demonstrating the presence of both co-transformed plasmids,
pDest32 and pDest22 vectors (Table 2). Induction of the
URA3gene was shown with growth on CSMLeu-Trp-Ura-

plates and the inhibition of growth on CSMLeu-Trp- + 0.2%
5FOA. TheURA3 promoter, SPO13, previously has been
shown to be a weak promoter, yielding a low growth of yeast
on plates lacking uracil. The data presented in Table 2 were
consistent with this finding. Induction ofHIS3was demon-
strated by showing an increased 3AT dose-dependent level
of inhibition of growth on CSMLeu-Trp-His- + 3AT in
agreement with theURA3data (Table 2). The induction of
LacZresulted in positive yeast colonies turning a blue color
when assayed on nitrocellulose membranes using X-gal as
the substrate (data not shown). All colonies that demonstrated
phenotypes interpreted by the four reporter gene readouts
as “possible interactors” with weak to little production of
â-galactosidase and/or uracil were confirmed and quantitated
using the liquid CPRG assay forLacZexpression (Table 2).
When the data are taken together, the growth patterns of the
co-transformed yeast confirmed the activation of the three
reporter genes in the yeast two-hybrid assays and established
SCP-2 and caveolin-1 as forming a true protein-protein
interaction.

Localization of the Binding Site of SCP-2 to the N-
Terminal Region of CaVeolin-1. The following deletion
mutants were utilized to determine the region of caveolin-1
that interacts with SCP-2: (i) Caveolin-1 1-156, a C-
terminal deletion mutant of Cav-1 missing most of the
C-terminal cytoplasmic domain, (ii) Cav 60-178, an N-
terminal deletion mutant of caveolin-1 missing almost all of
the N-terminal cytoplasmic domain except for the signature

Table 2: Summary of Phenotypes of Yeast Co-transformed with pD32-Caveolin-1 Mutants and pD22-SCP-2

CSM-Leu-Trp-His+ 3ATa

CSM-Leu-Trpb 12.5 mM 50 mM 100 mM CSM-Leu-Trp-Urac
CSM-Leu-Trp+

0.2% 5FOAd â-gal CPRGe phenotypef

2+ positive + ( - - - - + 5.890 positive
1+ positive + + + ( ( ( ( 0.202 positive
negative + + ( ( - + - 0.072 negative
caveolin-1 + + - - - ( ( 1.755 positive
Cav 1-156 + + - - - ( + 1.050 positive
Cav 60-178 + + ( - - + - 0.068 negative
Cav∆83-123 + + - - - ( + 1.243 positive
Cav∆60-100 + - - - - ( + 0.390 positive

a Colonies were replica-plated onto complete synthetic medium lacking Leu, Trp, and histidine (-His) with 12.5, 50, or 100 mM 3-amino-
triazole.b Colonies were streaked onto complete synthetic medium lacking leucine (-Leu) and tryptophan (-Trp). c Colonies were replica-plated
onto complete synthetic medium lacking Leu, Trp, and uracil (-Ura). d Colonies were replica-plated onto complete synthetic medium lacking Leu
and Trp with 0.2% 5-fluorooratic acid (5FOA).e Colonies were replica-plated onto yeast peptone A dextrose plates with nitrocellulose filters. A
qualitativeâ-galactosidase assay was performed using X-gal, resulting in+, (, or -. A qualitative CPRG assay was performed and reported as
â-galactosidase units.f Phenotype was determined by combining the results from the differential media to determine a protein-protein interaction.
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domain, (iii) Cav∆83-123, a caveolin-1 deletion mutant
missing part of the caveolin-1 scaffolding domain and part
of the transmembrane domain, and (iv) Cav∆60-100, a
caveolin-1 deletion mutant missing all of the scaffolding and
signature domains. Yeast co-transformed with pD22-caveo-
lin-1, -caveolin-1 1-156, -Cav∆83-123, -Cav∆60-100,
and pD32-SCP-2 demonstrated the correct phenotypes
(interaction with SCP-2) on the selection media andâ-ga-
lactosidase activity equal to or greater than the 1+ positive
control (data not shown). Likewise, when caveolin-1 and
mutants were cloned into pD32 and co-transformed with
pD22-SCP-2, the correct phenotypes (interaction with SCP-
2) on the selection media were observed andâ-galactosidase
activity was equal to or greater than the 1+ positive control
(Table 2). However, yeast co-transformed with the fusion
construct, pD32Cav 60-178, and pD22-SCP-2 failed to
demonstrate the correct phenotypes on the test media for a
protein-protein interaction and were negative forâ-galac-
tosidase activity in both the X-gal assay (data not shown)
and CPRG assay (Table 2). These results strongly suggest
that caveolin-1 does not bind SCP-2 through the scaffolding
domain, the C-terminal cytoplasmic tail, or the signature
domain. Instead, the binding site of caveolin-1 for SCP-2
was localized to the N-terminal cytoplasmic domain com-
prised of caveolin-1 residues 1-59.

SCP-2 and CaVeolin-1-GAL4 DNA-Binding Domain- and
ActiVating Domain-Fusion Proteins Were Present in the Co-
transformed Yeast.Expression of both fusion proteins in
cotransformed yeast was confirmed by Western blot analyses
(Figure 2). The GAL4 fusion proteins were observed when
the yeast lysates were electroblotted and probed with either
SCP-2-specific peptide antibodies or caveolin-1 antibodies
(Figure 2). In Figure 2A, the co-transformed yeast lysates
containing pD32-caveolin-1 full length or mutants and pD22-
SCP-2 showed a SCP-2 fusion protein at the sameMr (∼25.5
kD, lanes 2-5). Whereas in Figure 2B, the caveolin-1 fusion
proteins were seen as a dimer (Mr between 60 and 78 kD).
For example, pD32-cav∆83-123 should run at∼62.8 kD
because Gal4 calculates as∼16.8 kD and cav∆83-123 as
∼14.6 kD, making the monomer∼31.4 kD and the dimer
∼62.8 kD (lane 2), and pD32-caveolin-1 calculates to∼38.8
kD monomer and∼77.6 kD dimer (lane 5). These data
corroborated that the fusion proteins encoded on both
plasmids were translated in the yeast.

Direct Interaction of CaVeolin-1 with SCP-2 in Vitro: Role
of the SCP-2 N Terminus.The caveolin-1 scaffolding domain
(aa 80-100) represents not only the binding sites for
numerous proteins (48, 49) but also the membrane lipid raft
binding site (68, 69). By analogy, although the SCP-2
N-terminal aa 1-32, an amphipathicR-helix structure (i.e.,

hydrophobic and cationic faces), comprises an SCP-2
structural domain for the interaction with model membranes
containing anionic phospholipids (63-65), it is not known
whether SCP-21-32 comprises a protein binding (e.g., ca-
veolin-1) domain. To begin to resolve this issue, the
N-terminal SCP-21-32 was synthesized, coupled to Sepharose
4B beads, and used in anin Vitro binding assay, wherein
caveolin-1 binding was detected by Western blot analyses.
Synthetic peptides corresponding to caveolin-1 residues
2-31, 19-40, 34-55, 76-101, and 161-178 (Table 1), a
peptide corresponding to mature 13 kDa SCP-2 aa 1-32
(SCP-21-32), a peptide wherein residue aa20L was mutated
to E (SCP-21-32E20), and a peptide corresponding to the 20
aa presequence of pro-SCP-2 (pro-SCP-21-20) present in 15
kDa pro-SCP-2 (61, 62) were synthesized as described earlier
(Table 1) (63-65). To confirm thein ViVo yeast two-hybrid
assay that identified the caveolin-1 N domain as the
interaction site with SCP-2, thein Vitro peptide binding assay
was repeated using yeast lysates expressing full-length
caveolin-1 (pY52DCaveolin-1), a caveolin-1 mutant with the
putative binding site present (e.g., pY52DCaveolin-1 1-156),
and an N-terminal deletion mutant of caveolin-1 with the
putative binding site deleted (e.g., pY52DCav 60-178)
(Figure 3B). The lack of reactive bands in lanes 1, 2, 3, and
7 (Figure 3B) showed the lack of nonspecific binding of the

FIGURE 2: Expression of SCP-2- and caveolin-1-fusion proteins
in co-transformed yeast. Untransfected (lanes 1) and co-transfected
MaV203 yeast cell lysates containing pD32Cav1∆83-123 (lanes
2), pD32Cav1∆60-100 (lanes 3), pD32Cav1 1-156 (lanes 4), and
pD32Cav1 (lanes 5) were separated on 12% SDS-PAGE and
transferred onto nitrocellulose membranes. The blots were probed
with rabbit anti-SCP-21-32 (A) or anti-Cav2-31 (B) followed by goat
anti-rabbit HRP-conjugated secondary antibodies.

FIGURE 3: SCP-21-32 binding assays: MDCK cell lysates and yeast
expressing caveolin-1 (pY52DCav1). MDCK or InVSc-1 cell
lysates were incubated with the immobilized SCP-21-32 (Sepharose-
4B-SCP-21-32), separated on 12% SDS-PAGE, transferred to
nitrocellulose membranes, probed with rabbit caveolin-1 antisera,
and detected as described in the Materials and Methods. (A)
Analysis of MDCK (lane 4) and InVsc-1 (lane 3) lysates reacted
with Sepharose-4B-SCP-21-32. Beads only with each of the lysates
served as a negative control (lanes 1 and 2). Unreacted MDCK
lysates was utilized as the positive control (lane 5). (B) Sepharose-
4B-SCP-21-32 reacted with yeast lysates expressing full-length
caveolin-1 (lane 4) and caveolin-1 deletion mutants, Cav1 1-156
(lane 5) and Cav1 60-178 (lane 6). Each lysate was reacted with
beads only (lanes 1-3) to show specificity with SCP-21-32. Lane
7 shows beads and peptide only. (C) Sepharose-4B-SCP-21-32E20
reacted with yeast lysates expressing full-length caveolin-1 (lane
3) and caveolin-1 deletion mutants, Cav1 1-156 (lane 4) and Cav1
60-178 (lane 5). Beads with no peptide were reacted with lysates
from either untransformed yeast (InvSC-1) or yeast expressing Cav1
60-178 (lanes 1 and 2, respectively) to show specificity with SCP-
21-32E20. Lane 6 shows beads and peptide only. (D) Sepharose-4B-
pro-SCP-21-20 reacted with yeast lysates expressing full-length
caveolin-1 (lane 4) and caveolin-1 deletion mutants, Cav1 1-156
(lane 5) and Cav1 60-178 (lane 6). Lysates were reacted with beads
only (lanes 2 and 7) to show specificity with SCP-21-32. Lane 1
shows beads and peptide only. Lane 8 shows the specificity of the
antibody for caveolin-1 expressed from full-length caveolin-1.
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Sepharose-4B beads and specificity of the antibody. SCP-
21-32-linked beads bound to full-lengthR-caveolin-1 but not
â-caveolin-1 (lane 4 in Figure 3B). In contrast, SCP-21-32-
linked beads bound to bothR- and â-caveolin-1 1-156,
missing the C terminus (lane 5 in Figure 3B). Cav 60-178
failed to bind the SCP-21-32-linked beads (lane 6). When
these findings are taken together, they not only confirm that
the SCP-21-32 binding site is localized to the N terminus of
R-caveolin-1 but also that the interaction with the shorter
â-caveolin-1 (missing the N-terminal 32 aa present only in
R-caveolin-1) became more prominent upon deletion of the
caveolin-1 C terminus. These data suggest that the N-terminal
SCP-2 interacted with the N terminus of full-lengthR-ca-
veolin-1 but interacted withâ-caveolin-1 only when the
R-caveolin-1 C terminus was missing.

Because SCP-21-32 bound the N terminus of caveolin-1,
it was important to determine if this correlated with the ability
of this SCP-2 domain to bind anionic phospholipids. SCP-
21-32 contains an amphipathic helical region containing a
basic face, which directly interacts with anionic phospho-
lipids in model membranes (63, 64). Therefore, the amphi-
pathic helical region of SCP-21-32 was disrupted by replacing
Leu20 with Glu20 to produce the mutant peptide SCP-
21-32E20. In this study, SCP-21-32E20 was coupled to beads
and binding to caveolin-1 was determined with thein Vitro
peptide binding assay using yeast lysates expressing full-
length caveolin-1 and caveolin-1 deletion mutants. SCP-
21-32E20 interacted with full-lengthR-caveolin-1 (lane 3 in
Figure 3C) and with caveolin-1 deletion mutants, Caveolin-1
1-156 (lane 4 in Figure 3C), but not with the Cav 60-178
(lane 5 in Figure 3C). Again, Western blotting also showed
that SCP-21-32E20 primarily interacted only with the full-
length R-caveolin-1 form (lane 4 in Figure 3C), but also
interacted with theâ-caveolin-1 when the C terminus was
deleted (lane 4 in Figure 3C). Note that SCP-21-32E20 does
not bind to anionic phospholipids (63, 64) and does not
exhibit lipid-transfer activity (70). Thus, the ability of SCP-
21-32 to interact with the N-terminal region of caveolin-1
shown herein is independent of its ability to bind to anionic
phospholipids (63, 64) and elicit lipid transfer (70).

To determine if the 20 aa presequence present in pro-
SCP-2 also interacted with caveolin-1, pro-SCP-21-20 was
linked to beads and tested for binding to full-length and
mutant caveolin-1. Pro-SCP-21-20-linked beads predomi-
nantly bound to full-lengthR-caveolin-1 (lane 4 in Figure
3D), whereas Pro-SCP-21-20 bound to bothR- andâ-caveo-
lin-1 when the caveolin-1 C terminus was deleted (lane 5 in
Figure 3D) but not to Cav 60-178 (lane 6 in Figure 3D).
Lane 8 of Figure 3D shows that the yeast express both
isoforms of caveolin-1. Thus, in the mature SCP-2, the
caveolin-1 binding site was localized in SCP-21-32, while in
the pro-SCP-2 precursor, the 20 aa N-terminal presequence
also bound. When these data are taken together, they indicate
that the SCP-2 caveolin-1 binding site is localized to the N
terminus, as suggested with the yeast two-hybrid data, and
the caveolin-1 binding also occurs with the 20 aa presequence
present in pro-SCP-2.

To examine the caveolin-1-SCP-2 interaction in greater
detail, synthetic peptides corresponding to caveolin-1 residues
2-31, 19-40, 34-55, 76-101, and 161-178 were synthe-
sized and attached to CNBr-activated Sepharose 4B beads.
In addition, SCP-2 was purified to test the reactivity to the

different caveolin-1 peptides in a direct binding assay. The
silver stain (inset) and mass chromatogram show the purity
of the SCP-2 protein (Figure 4).

Purified SCP-2 and recombinant yeast lysates expressing
SCP-2 were reacted with the panel of caveolin-1 synthetic
peptides bound to Sepharose beads (Figure 5). Note in all
assays the beads alone (no peptide) incubated with InVSc1
lysates were nonreactive. In Figure 5A, Cav2-31-bound beads
also failed to react with InVSc1 or pY52D-SCP-2 (lanes 2
and 5, respectively). Similarly, Cav 76-101 and 161-178
failed to bind purified SCP-2 (data not shown) or SCP-2
expressed in yeast (parts C and D of Figure 5). When the
caveolin-1 N-terminal peptides, Cav119-40 and Cav134-55,
were reacted with purified SCP-2, a strong interaction was
noted (lanes 2 and 3 in Figure 5B). However, there was a
minor interaction between the beads alone with purified
SCP-2 (lane 1 in Figure 5B). This pattern was repeatedly
observed with purified SCP-2 varying in concentration from
50 to 200 ng and a constant concentration of bound-peptide
or beads alone. To rectify this background reactivity, the IDV
of equal areas was established for each concentration of
SCP-2 reacted against the N-terminal caveolin-1 peptides.
The IDV of the light band corresponding to beads alone and
SCP-2 were subtracted from the positive values and plotted
(Figure 5E). As shown with both 200 and 50 ng of purified
SCP-2, the IDV of SCP-2 and Cav19-40 was consistently
higher than that observed with Cav34-55, suggesting that
SCP-2 had a higher affinity for Cav19-40 than for Cav34-55

(Figure 5E). When these data are taken together, they indicate
a specific interaction between SCP-2 and Cav19-40 and
Cav34-55, with a stronger binding with Cav19-40.

In summary, the results of thein ViVo yeast two-hybrid
assays indicated that the caveolin-1 cytoplasmic N-terminal
59 aa contained the SCP-2 binding domain. Thein Vitro
binding assays using SCP-21-32 confirmed that the N
terminus of SCP-2 binds to an N-terminal region of caveo-
lin-1 and refined the SCP-2 binding site to the first 32

FIGURE 4: Mass spectrum and SDS-PAGE analysis of purified
recombinant SCP-2. SCP-2 was IPTG-induced and purified from
theE. coli strain, W3110, and examined by mass spectrometry and
SDS-PAGE with silver stain. The matrix-assisted laser desorption
ionization time-of-flight (MALDI-TOF) mass spectrum of SCP-2
is shown. The inset is a photograph of a silver-stained gel after
SDS-PAGE of molecular-size markers (lane 1) and 10 mg of
SCP-2 (lane 2).
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residues (Figure 7). Subsequent caveolin-1 peptide binding
assays using purified or recombinant SCP-2 localized the
binding domain of SCP-2 to caveolin-1 to Cav119-40 and
Cav134-55 or caveolin-1 residues 19-55, which can be further
defined to aa 32-55 when considering the negative binding
results of SCP-2 to Cav12-31. (Figures 5 and 7). These data
further indicated a stronger reactivity between SCP-2 and
the 19-40 caveolin-1 peptide when compared to the 34-
55 peptide.

Role of the N-Terminal Presequence of pro-SCP-2 in
Receptor Interactions in Vitro.As indicated above, the 20
aa presequence of pro-SCP-2 also interacted with caveolin-
1, albeit the functional significance of this finding is not
known. Western blot analyses detect only the mature SCP-
2, suggesting that the pro-SCP-2 interaction is not physi-
ologically significant (reviewed in ref39). However, con-
vincing evidence has been presented that demonstrates that

the pro-SCP-2 is significantly more targeted to peroxisomes,
where the 20 aa presequence is proteolytically cleaved
(reviewed in ref39). This suggests that the 20 aa presequence
might be more important for the interaction of the pro-SCP-2
with the peroxisomal receptor (PEX 5C), in which the
peroxisomal targeting sequence 1 is present in the C terminus
of pro-SCP-2 as well as SCP-2. To examine the latter
possibility, a FRET assay was used to determine binding
affinities of PEX5C for pro-SCP-2 versus SCP-2 as described
in the Materials and Methods. PEX5C bound pro-SCP-2 with
high affinity, Kd of 2.3 nM, over 12-fold stronger than that
for SCP-2 (Table 3). Consistent with the close molecular
interaction between PEX5C and these proteins, the respective
intermolecular distances were both near 70 Å (Table 3).
Further, the intermolecular distance between pro-SCP-2 and
PEX5C in the complex was slightly larger than between
SCP-2 and PEX5C, reflecting the larger size of the 15 kDa
pro-SCP-2 as compared to 13 kDa SCP-2 (Table 3). These
data indicate that the pro-SCP-2 interacts significantly more
strongly with the peroxisomal receptor PEX5C than does
SCP-2 (p < 0.05).

Role of the N-Terminal Presequence of pro-SCP-2 in
Determining SCP-2 Distribution to PM Lipid Rafts in LiVing
Cells. To determine if the presence of the N-terminal
presequence in pro-SCP-2 resulted in less targeting to PM
caveolae/lipid rafts, SCP-2 was colocalized with GM1

(caveolae/lipid raft marker) by LSCM. When L cells were
incubated with the same amounts of Cy5-SCP-2 or Cy5-
pro-SCP-2 as described in the Materials and Methods, these
proteins were taken up by the cells to a similar extent (not
shown). However, labeling of the intact cells with cholera
toxin B-AF488 (marker for GM1) revealed significant
differences in colocalization at PM caveolae. When Cy5 and
cholera toxin B-AF488 were simultaneously imaged through
separate photomultipliers by LSCM, regardless of whether
Cy5- SCP-2 (Figure 8A) or Cy5-pro-SCP-2 (Figure 8C) were
incorporated into the cells, cholera toxin B-AF488 labeled
GM1 primarily at the cell surface. Some punctuate cholera
toxin B-AF488 fluorescence appeared below the PM, reflect-
ing the known very rapid endocytic uptake of L cells (71,
72). A representative image of cells incubated with Cy5-
SCP-2 and cholera toxin B-AF488 showed that some Cy5-
SCP-2 colocalized with cholera toxin B-AF488 labeled GM1

at the PM (Figure 8B). In contrast, there was much less
colocalization in cells incubated with Cy5-pro-SCP-2 and
cholera toxin B-AF488 (Figure 8D). Thus, the presence of
the N-terminal presequence in pro-SCP-2 resulted in less
targeting to the PM caveolae/lipid rafts, consistent with the
known preferential targeting of pro-SCP-2 to peroxisomes
(reviewed in ref39).

DISCUSSION

Although a large variety of proteins that are important in
cell signaling and lipid uptake/efflux reside in PM caveolae,
the mechanism whereby these proteins are targeted to
caveolae is not completely clear. With regard to proteins
involved in signaling, to date, all are thought to directly
interact with caveolin-1 through specific aa binding se-
quences. Each signaling protein is predicted to contain a CBD
that recognizes the CSD residing in aa 80-101 of caveolin-1
(47). The CSD is not only important for signaling protein
recognition, but also model membrane studies indicate that

FIGURE 5: Absence of SCP-2 binding to mutant caveolin-1 peptides
(Cav1 2-32 and Cav1 167-178) coupled to Sepharose beads.
Caveolin-1 synthetic peptides (aa 2-31, 19-40, 34-55, 76-101,
and 161-178) were linked to Sepharose beads and reacted with
InVSc-1 only (negative control), yeast expressing SCP-2 (A, C,
and D) or purified recombinant SCP-2 (B). Peptides bound to beads
were reacted with SCP-2, washed, separated on a 12% SDS-PAGE,
transferred to nitrocellulose, and reacted with anti-sera specific to
SCP-2. (A) Yeast expressing SCP-2 only (lane 6) or reacted with
beads only (lane 4) or beads bound by the N-terminal caveolin-1
peptide (aa 2-31, lane 5). (B) Purified recombinant SCP-2 (lane
5) was reacted with Sepharose beads bound with Cav119-40 (lane
2) or Cav134-55 (lane 3). InVSc1 and beads only are shown in lane
4, and purified SCP-2 with unbound beads is shown in lane 1. (C
and D) Akin to A, yeast expressing SCP-2 were reacted with
caveolin-1 peptide-bound Sepharose beads. C shows reactivity with
the Cav176-101 (lane 3), and D shows reactivity with Cav1161-178
(lane 6). Controls in both panels included InVSc1 (C, lane 4; D,
lanes 2 and 5), expressed SCP-2 only (C, lane 1; D, lane 4), and
beads only (no peptide) (D, lane 1). (E) Because of the low
reactivity with purified SCP-2 and beads only (see B, lane 1),
additional studies were performed using different concentrations
of SCP-2 and constant concentrations of Sepharose beads only or
bound to peptides. These results are graphically shown in E. The
y axis shows the average IDV equivalent to IDV/area. Thex axis
shows the concentration of purified recombinant SCP-2 reacted with
Cav119-40 (0) or Cav134-55 (9). The values of the average IDV
acquired with SCP-2 reacted with beads only were subtracted from
the average IDV of SCP-2 reacted with peptide-bound beads and
therefore not shown.
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a peptide comprised of the caveolin-1 scaffolding domain is
sufficient for membrane interaction and membrane domain
formation (68). The membrane interaction component of the
scaffolding domain is mediated largely by electrostatic
interactions between aa segments rich in basic aa, which
interact with/recruit acidic phospholipids to form lipid rafts

(68). In contrast, because the CBD interaction motifs of
signaling proteins contain very few acidic and even fewer
basic aa, it is unlikely that these protein-caveolin-1 interac-
tions occur primarily via electrostatic interactions (48).
Instead, the CBD of interacting signaling proteins is com-
prised of the recognition sequenceΦXΦXXXX Φ or
ΦXXXX ΦXXΦ, whereΦ is an aromatic aa (Trp, Phe, or
Tyr) (12, 48, 49). These data suggest that the relatively
hydrophobic CBD must interact with a relatively nonpolar
region present within the CSD, possibly via the seven
hydrophobic residues known to reside therein (68). An
important functional feature common to almost all signaling
protein/caveolin-1 interactions is that caveolin-1 association
inhibits the activities of the signaling proteins while post-
translational modifications (e.g., phosphorylation) disrupt
such interactions and enhance the activity of signaling
proteins (47, 48, 68) .

In contrast, the signaling and cholesterol homeostatic
functions appear codependent (73). Much less is known about
specific aa sequences that target proteins involved in lipid
uptake/efflux to caveolae. Of the membrane-associated
proteins (SRB1, ABCA1, P-gp, and caveolin-1) involved in
cholesterol uptake/efflux, only two of the possible interaction
pairs have been demonstrated: (i) cross-linking studies show
that ABCA1 directly interacts with caveolin-1, through an
as yet unresolved CBD and CSD sequences (22), and (ii)
caveolin-1 contains the requisite CBD sequence for interact-
ing with the caveolin CSD (48) and homo-oligomerizes,
important for caveolae formation and function in signaling

FIGURE 6: Sequence comparison ofR- andâ-caveolin-1: interaction sites with the SCP-2 N terminus. The sequences ofR-caveolin-1 and
â-caveolin-1 are aligned with three caveolin-1 peptides (Cav12-31, Cav119-40, and Cav134-55) to map the SCP-2 binding site. Full-length
SCP-2 did not react with Cav12-31 but did react with both Cav119-40 and Cav134-55, which has an overlap of sequences from aa 34-40.

FIGURE 7: Summary of SCP-2 and caveolin-1 binding data. The
known functional domains (signature domain aa 68-75, scaffolding
domain aa 80-100, and transmembrane domain aa 100-134 of
caveolin-1 are shown in the full-length schematic. Deletion muta-
tions are indicated below the full-length caveolin-1. The vertical
rectangle marked as residues 1-59 represents the putative binding
domain of caveolin-1 to SCP-2 as defined by the results of the
yeast two-hybrid assay (results on the far right). SCP-21-32 peptide
binding assays are shown to the right of the yeast two-hybrid data.
Results of the Cav1 peptide binding assays are shown at the bottom
of the figure, with a linear depiction of each peptide. On the basis
of these results, the SCP-2 binding domain of caveolin-1 has been
delineated to residues 32-55 (horizontal rectangle). When the data
are taken together, the SCP-2 binding domain for caveolin-1 mapped
to SCP-2 residues 1-32 and the caveolin-1 binding domain for
SCP-2 has been delineated to 23 residues.

Table 3: Interaction of SCP-2 and pro-SCP-2 with PEX 5Ca

FRET pair quenching

donor acceptor Kd (nM) R (Å)

Cy-3-PEX5C Cy-5-SCP-2 26( 2 66.8( 0.8
Cy-3-PEX5C Cy-5-Pro-SCP-2 2.3( 0.2b 72.4( 0.4b

a FRET was performed as described in the Materials and Methods
to determine the binding affinity (Kd) and intermolecular distance (R).
b p < 0.05 (n ) 3) versus SCP-2.
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and lipid transport (11, 34, 48, 68, 74-76). Of the membrane-
associated proteins (SRB1, ABCA1, P-gp, and caveolin-1)
involved in cholesterol uptake/efflux, only caveolin-1 has
been shown to bind cholesterolin Vitro (17), cross-link to
photoactivatable cholesterol (31, 73, 77), and mediate
bidirectional trafficking of cholesterol to and from caveolae
(17, 25, 78). Phosphorylation of Ser 80 within the CSD
inhibits sterol binding to caveolin-1 and stimulates cholesterol
efflux from cultured cells (73). The fact that SCP-2 is a
ubiquitous protein found in all mammalian tissues examined
suggests that the SCP-2 interaction with the N terminus of
caveolin-1 may facilitate cholesterol efflux when the interac-
tion of caveolin-1 with the caveolin-1 CSD is disrupted. To
date, the specific membrane protein(s) involved in cholesterol
insertion into caveolae, translocation across caveolae, and
desorption from caveolae remain to be identified.

Given that the scaffolding domain of caveolin-1 recognizes
the binding domain of other caveolin-1 molecules, caveolin-
1/caveolin-1 oligomerization may be involved in the docking
of caveolar vesicles or caveolin-1/lipid/chaperone complexes
that direct cholesterol and cholesteryl ester trafficking to/
from caveolae (11, 34, 48, 68, 74, 76). Although FRET and
immunogold electron microscopy data from our laboratory
suggest that SCP-2 is in sufficient proximity to caveolin-1
for direct interaction in several cultured cell lines, examina-
tion of the aa sequence indicates that this cholesterol binding/

transport protein does not contain the consensus CBD
necessary for interaction with the CSD (50). The data
presented herein provided several new insights and demon-
strated for the first time a potential new caveolin-1 recogni-
tion domain, independent of the CSD motif, for the inter-
action with proteins not containing the classic CBD domain.

Our previous data show that full-length SCP-2 and full-
length caveolin-1 interact in anin ViVo yeast two-hybrid
assay. This reactivity was further shown by FRET and co-
immunoprecipitation strategies, strongly suggesting a direct
protein-protein interaction between these molecules (50).
Therefore, we evaluated the interaction of caveolin-1 mutants
with SCP-2 to determine if SCP-2 bound a specific caveo-
lin-1 domain. Reactivity of purified caveolin-1 synthetic
peptides and purified SCP-2 in anin Vitro binding assay
verified a direct protein-protein interaction. However, we
recognize that other molecules may be involvedin ViVo. Data
from the current investigation revealed the following:

First, studies with caveolin-1 mutants in the yeast two-
hybrid assays demonstrated that the SCP-2 binding domain
was present in the caveolin-1 N-terminal region of bothR-
andâ-caveolin-1 isoforms.

Second, deletion of theR-caveolin-1 N-terminal aa 1-59
abolished binding to the SCP-21-32-bound beads. Conversely,
the N-terminal R-caveolin-1 peptide (Cav2-31) bound to
Sepharose beads failed to bind purified SCP-2, whereas
SCP-2 bound two caveolin-1 peptides, Cav19-40 and Cav
34-55, with the more N-terminal peptide showing stronger
reactivity. When these result are taken together, this positive
reactivity with Cav19-40 and Cav34-55 and negative reactivity
with Cav2-31 indicated that the SCP-2 binding site encom-
passed caveolin-1 residues 34-50, a new caveolin-1 binding
domain. It should be noted however that, because of alternate
transcription sites, the caveolin-1 gene encodes for two
isoforms: R-caveolin-1 andâ-caveolin-1 (79, 80). These
isoforms differ in that theâ-caveolin-1 is missing the
N-terminal 32 aa (Figure 6). On the basis of the fact that
the putative SCP-2 binding site forR-caveolin-1 is residues
34-40, which are also present at the N terminus of
â-caveolin-1 (boxed area in Figure 6), it is expected that
SCP-2 would interact equally well with both proteins.

Third, the C-terminal deletion mutants ofR-caveolin-1
1-156 andâ-caveolin-1 1-156 interacted with SCP-21-32

and Pro-SCP-21-20 by thein Vitro peptide binding technique
but only weakly bound full-lengthâ-caveolin-1. These data
indicate that (i) deletion of theâ-caveolin-1 C terminus
facilitates exposure of theâ-caveolin-1 N terminus to interact
with SCP-2, (ii) theR-caveolin-1 C terminus is not essential
to SCP-2 binding, and (iii) the caveolin-1 C terminus
influences the exposure of the caveolin-1 N terminus. This
could explain earlier results in which the rotavirus protein
NSP4 interacts with both termini of caveolin-1 (54). In this
study, the N terminus of caveolin-1 was more reactive in
the peptide binding assay than the C terminus of caveolin-
1, perhaps because the role of NSP4 binding to the C
terminus of caveolin-1 is to expose the N terminus of
caveolin-1 to NSP4 for binding. Additional data are needed
to verify this hypothesis, although these data are consistent
with the mutant caveolin-1 SCP-2 binding results.

Fourth, deletion mutants of caveolin-1 missing all or part
of the scaffolding domain (aa 80-100) interacted with SCP-2
in the yeast two-hybrid assay (Cav∆60-100 and Cav∆83-

FIGURE 8: Co-localization of Cy5-SCP-2 or Cy5-proSCP-2 with
cholera toxin B-Alexa Fluor 488 (AF488) in L cells. L cells were
incubated with Cy5-labeled SCP-2 or Cy5-labeled proSCP-2,
followed by Alexa Fluor 488-labeled cholera toxin B as described
in the Materials and Methods. Laser scanning confocal microscopic
images were obtained also, as described in the Materials and
Methods. A, Cholera toxin B-AF488; B, Cy5-labeled SCP-2 co-
localized with cholera toxin B-AF488 (yellow pixels); C, cholera
toxin B-AF488; D, Cy5-labeled proSCP-2 co-localized with cholera
toxin B-AF488 (yellow pixels).
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123). These data were consistent with SCP-2 lacking the
aromatic consensus CBD (50). Thus, SCP-2 interaction with
caveolin-1 must be mediated through a domain outside of
the caveolin-1 CBD. Our laboratory showed earlier that the
SCP-2 N-terminal aa 1-32 has an amphipathicR-helix
structure and that one face of this helix is enriched with basic
residues that interact with anionic phospholipids in mem-
branes (52, 63). Because both the SCP-2 N terminus (63)
and the CSD domain (68) are rich in basic aa (positively
charged), this may actually result in an electrostatic repulsion
between them and explain in part why SCP-2 does not bind
to the CSD.

Fifth, the N-terminal aa 1-32 of SCP-2 were sufficient
to provide an interaction domain for caveolin-1. Thein Vitro
binding assay showed that the N-terminal peptide SCP-21-32,
coupled to Sepharose beads, captured full-lengthR-caveo-
lin-1 from lysates of MDCK cells or yeast expressing
caveolin-1 but not yeast deficient in caveolin-1. SCP-21-32-
Sepharose beads did not capture full-lengthâ-caveolin-1
from MDCK cell lysates. Although the current findings
demonstrate that N-terminal SCP-21-32 interacts directly with
the N-terminal binding site present inR-caveolin-1, it must
be noted that the N-terminal SCP-21-32 also represents the
interaction domain with anionic phospholipids of model
membranes (63, 64). Circular dichroism (63, 64), nuclear
magnetic resonance (NMR), and crystallography studies
show that SCP-21-32 is comprised of an amphipathicR helix
with hydrophobic residues facing inward into a hydrophobic
tunnel (38, 81, 82). The cationic residues face outward for
the interaction with membranes containing anionic phos-
pholipids (63) or potentially proteins with patches of anionic
residues (38, 81, 82). Caveolin-1 contains a putativeR-helical
domain at residues 30-40 (78). Modeling studies indicate
that this region could interact with theR-helical region of
N-terminal SCP-2 (Table 1). To disrupt the amphipathicR
helix of SCP-21-32, Leu20 (L20) was replaced with Glu20
(E20). This change results in the loss of binding to anionic
phospholipids (63, 64) as well as the loss of both phospho-
lipid and cholesterol transport (70). However, as shown
herein, SCP-21-32E20 still interacted with full-lengthR-ca-
veolin-1, suggesting that the interaction of SCP-2 with
caveolin-1 was independent of its ability to bind/transfer
cholesterol and phospholipid.

To date, very little is known regarding the functional
significance of these two isoforms of caveolin-1 (79).
Immunofluorescence and immunogold labeling reveal that
the R- and â-caveolin-1 have distinct but overlapping
distributions at the PM (80). On the basis of the finding that
R-caveolin-1 is localized in deep caveolae, whileâ-caveo-
lin-1 is localized in shallower caveolae, it has been suggested
that R-caveolin-1 may have a greater potential to form
caveolae (79). The current investigation extends the potential
functional significance of these isoforms by demonstrating
that only the full-lengthR-caveolin-1 but not theâ-caveolin-1
interacted with SCP-2 and the N-terminal SCP-21-32. To our
knowledge, this is the first report identifying a new protein
binding site in theR-caveolin-1 isoform at the N-terminal
cytoplasmic region distinct from the scaffolding domain for
a cellular protein and the second report of a protein binding
outside the CBD/CSD (54).

It is of interest to note that the 20 aa presequence present
in pro-SCP-2 also interacted with the N-terminal region of

caveolin-1. This N-terminal presequence is flexibly disor-
dered in solution (83, 84), suggesting that the presequence
may be available for the interaction with caveolin-1. How-
ever, this interaction is not physiologically significant because
(i) Western blotting detects only the mature 13 kDa SCP-2
and not the 15 kDa pro-SCP-2 in all mammalian tissues
examined as well as in all transfected cells overexpressing
pro-SCP-2 examined (reviewed in ref39); (ii) as shown in
the present work, pro-SCP-2 bound nearly 12-fold better than
SCP-2 to PEX5C, the receptor for the C-terminal peroxiso-
mal targeting sequence present in both pro-SCP-2 and SCP-
2. The higher affinity of PEX5C for pro-SCP-2 versus SCP-2
was recently confirmed by isothermal titration calorimetry
(83). The enhanced affinity of the pro-SCP-2 for PEX5C is
associated with greater aqueous exposure of the C-terminal
peroxisomal targeting sequence 1 in pro-SCP-2 as compared
to SCP-2 (60); (iii) the data presented herein show that, as
compared to SCP-2, incorporation of pro-SCP-2 into cells
resulted in less localization to GM1, a marker for caveolae/
lipid rafts at the PM. Photoactivatable GM1 cross-links to
caveolin-1 at the PM (85); (iv) expressing the cDNA for
pro-SCP-2 in transfected cells resulted in several-fold
enhanced peroxisomal targeting as compared to the expres-
sion of the cDNA encoding SCP-2 (reviewed in ref39); (v)
in normal tissues, the highest concentration of SCP-2 is found
in peroxisomes (reviewed in refs39 and 86); (vi) in all
normal tissues and transfected cells overexpressing pro-SCP-
2, the 20 aa presequence undergoes complete post-transla-
tional cleavage at the peroxisome, followed by degradation
(reviewed in ref39); (vii) there is little difference in the
localization of immunoreactive SCP-2 at the PM of cells
overexpressing SCP-2 or pro-SCP-2 (50, 87). Thus, the
interaction of the 20 aa presequence with caveolin-1 is not
likely to be of functional significance because the pro-SCP-2
protein is not detectable.

The SCP-2 interaction with the N-terminal aa 34-40 of
caveolin-1 is important in cholesterol trafficking: (i) The
SCP-2-N-terminal caveolin-1 interaction was highly selec-
tive for the R-caveolin-1, an isoform localized in “deep”
caveolae (79), possibly representing more mature caveolae
containing a fuller complement of proteins involved in
reverse cholesterol transport (RCT); (ii) The binding site in
R-caveolin-1 may provide a “docking” area for SCP-2 to
influence the activity of caveolin-1 in cholesterol transport
as both SCP-2 and caveolin-1 bind cholesterol. Furthermore,
the N-terminal binding site ofR-caveolin-1 may optimally
position SCP-2 to act as either a cholesterol donor or a
cholesterol acceptor to/from caveolin-1 or other proteins that
interact with caveolin-1 within the caveolar membrane. For
example, cross-linking studies show that caveolin-1 does not
directly interact with SRB1 or HDL but instead cross-links
with ABCA1, which in turn cross-links with HDL (22).
When this finding is taken together with the data presented
herein, it suggests that SCP-2 transports bound ligand (e.g.,
cholesterol) from intracellular sites, followed by the interac-
tion with caveolin-1 at the PM for cholesterol efflux via
ABCA1 bound to HDL or apoA1. Alternately, SCP-2 bound
to R-caveolin-1 in PM caveolae may function as a cholesterol
acceptor from HDL tethered to ABCA1 or SRB1 localized
in caveolae. These possibilities were differentiated by studies
with transfected cells overexpressing SCP-2, which support
the latter possibility because these cells exhibited enhanced
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cholesterol uptake (44), increased cholesterol transport from
the PM to endoplasmic reticulum for esterification (45, 88,
89), and reduced efflux of cholesterol from lipid-storage
droplets (33). These studies with cultured cells are further
supported by findings with gene-targeted mice. In control-
fed mice, SCP-2 overexpression induced hepatic cholesterol
(unesterified and esterified) accumulation and potentiated the
effect of a cholesterol-rich diet to further enhance hepatic
cholesterol accumulation (90). In contrast, SCP-2/SCP-x gene
ablation reduced hepatic cholesterol (especially cholesteryl
ester) accumulation (46). When these data are taken together,
they suggest that the SCP-2 interaction with caveolin-1 may
facilitate cholesterol desorption from caveolae for uptake or
retention into the cell rather than for efflux.

Recent reports suggest additional functional significance
of the SCP-2 interaction with the N terminus ofR-caveolin-1
in lipid signaling. Lipid rafts/caveolae are enriched not only
in cholesterol but also in lipids involved in intracellular
signaling [phosphatidylinositol (PtdIns), phosphatidylinositol-
4-phosphate (PtdIns-4-P), phosphatidylinositol-4,5-bispho-
sphate (PtdIns-4,5-P), sphingolipids, gangliosides, ceramide,
and diacylglycerol] (47, 51, 78, 91-93). SCP-2 binds and
enhances transfer not only of cholesterol but also PI and
sphingolipids (35, 39, 94, 95). SCP-2 overexpression redis-
tributes PI from intracellular sites to PM caveolae/lipid rafts
(4, 51, 96, 97), redistributes select sphingolipid-signaling
lipids to caveolae/lipid rafts (97, 98), stimulates insulin-
mediated inositol-triphosphate production (94), and enhances
conversion of ceramide to galactosyl-ceramide (95). When
both signaling lipids were bound and transferred, such as
PI, polyphosphoinositides, and sphingolipids, the SCP-2
interaction with caveolin-1 at PM caveolae may regulate
signaling within the cell (reviewed in refs95 and97).

In summary, the data presented herein using the yeast two-
hybrid system, anin Vitro binding assay, and FRET
demonstrated for the first time that SCP-2, specifically the
N-terminal aa 1-32 amphipathicR helix, interacted with
caveolin-1 at a site distinct from the C-terminal caveolin-1
scaffolding domain. Instead, SCP-2 bound caveolin-1 through
a new domain identified in theR-caveolin-1 N terminus
between aa 34-40. Disruption of the SCP-2 N-terminal
amphipathic helical region (i.e., SCP-21-32E20) abolished
binding to anionic phospholipids (63, 64) and lipid-transfer
activity (70) but did not inhibit SCP-2 binding to the
R-caveolin-1 N terminus. This indicated that ligand binding
to SCP-2 and the SCP-2 interaction with caveolin-1 were
independent. While the 20 aa presequence present in pro-
SCP-2 also interacts withR-caveolin-1, the physiological
significance of this interaction is doubtful because (i) pro-
SCP-2 is much more weakly targeted to GM1 located in PM
caveolae/lipid rafts, (ii) pro-SCP-2 has a 12-fold stronger
affinity than SCP-2 for the peroxisomal receptor of the
peroxisomal targeting sequence, and (iii) pro-SCP-2 is much
more highly targeted than SCP-2 to peroxisomes, where the
N-terminal 20 aa are cleaved such that Western blotting
detects only the mature SCP-2. Finally, a more prominent
interaction between SCP-2 andâ-caveolin-1 was observed
when the C terminus of caveolin-1 was deleted. Because
R-caveolin-1 is localized primarily in deep caveolae, these
findings report one of the first structurally and potentially
functionally selective interactions of a soluble lipid carrier
with a specific caveolin-1 isoform.
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