903 research outputs found

    The contribution of Narrow-Line Seyfert 1 galaxies to the soft X-ray background

    Get PDF
    The ROSAT Ultradeep HRI survey in the Lockman Hole contains a complete sample of 91 X-ray sources with fluxes in the 0.5-2 keV band larger than 1.2 times 10e-15 erg cm-2 s-1, where over about 75 per cent of the sources are quasars or Seyfert galaxies. During the course of our optical identification work, we have obtained optical spectra of 67 narrow emission line galaxies (NELG), which are physically not associated with the X-ray sources. We have derived the equivalent width (EW) and the full width at half maximum (FWHM) for the most prominent emission lines of 41 quasars and Seyfert galaxies taken from the ROSAT Deep Survey (RDS), which has a flux limit of 5.5 times 10e-15 erg cm-2 s-1 in the 0.5-2.0 keV band. Furthermore we have obtained the EW and FWHM values of the field NELGs. Here we present the spectroscopic discrimination between RDS Seyfert galaxies and field galaxies (NELG). The analysis of the emission lines has revealed that a single object out of 69 spectroscopically identified AGN fits the optical criteria of Narrow-Line Seyfert 1 galaxies (NLS1). This may indicate that NLS1 contribute only marginally to the soft X-ray background, but we can not exclude a possible larger contribution.Comment: Invited talk presented at the Joint MPE,AIP,ESO workshop on NLS1s, Bad Honnef, Dec. 1999, to appear in New Astronomy Reviews; also available at http://wave.xray.mpe.mpg.de/conferences/nls1-worksho

    Seasonal Antarctic pressure variability during the twentieth century from spatially complete reconstructions and CAM5 simulations

    Get PDF
    As most permanent observations in Antarctica started in the 1950s, understanding Antarctic climate variations throughout the twentieth century remains a challenge. To address this issue, the non-summer multi-decadal variability in pressure reconstructions poleward of 60°S is evaluated and assessed in conjunction with climate model simulations throughout the twentieth and early twenty-first centuries to understand historical atmospheric circulation variability over Antarctica. Austral autumn and winter seasons show broadly similar patterns, with negative anomalies in the early twentieth century (1905–1934), positive pressure anomalies in the middle twentieth century (1950–1980), and negative pressure anomalies in the most recent period (1984–2013), consistent with concurrent trends in the SAM index. In autumn, the anomalies are significant in the context of estimates of interannual variability and reconstruction uncertainty across most of the Antarctic continent, and the reconstructed patterns agree best with model-generated patterns when the simulation includes the forced response to tropical sea surface temperatures and external radiative forcing. In winter and spring, the reconstructed anomalies are less significant and are consistent with internal atmospheric variability alone. The specific role of tropical SST variability on pressure trends in these seasons is difficult to assess due to low reconstruction skill in the region of strongest tropical teleconnections, the large internal atmospheric variability, and uncertainty in the SST patterns themselves. Indirect estimates of pressure variability, whether through sea ice reconstructions, proxy records, or improved models and data assimilation schemes, will help to further constrain the magnitude of internal variability relative to the forced responses expected from SST trends and external radiative forcing

    Hosts of Type II Quasars: an HST Study

    Full text link
    Type II quasars are luminous Active Galactic Nuclei whose centers are obscured by large amounts of gas and dust. In this contribution we present 3-band HST images of nine type II quasars with redshifts 0.25<z<0.4 selected from the Sloan Digital Sky Survey based on their emission line properties. The intrinsic luminosities of these quasars are thought to be in the range -24>M_B>-26, but optical obscuration implies that host galaxies can be studied unencumbered by bright nuclei. Each object has been imaged in three filters (`red', `green' and `blue') placed between the strong emission lines. The spectacular, high quality images reveal a wealth of details about the structure of the host galaxies and their environments. Most galaxies in the sample are ellipticals, but strong deviations from de Vaucouleurs profiles are found, especially in the blue band. We argue that most of these deviations are due to the light from the nucleus scattered off interstellar material in the host galaxy. This scattered component can make a significant contribution to the broad-band flux and complicates the analysis of the colors of the stellar populations in the host galaxy. This extended component can be difficult to notice in unobscured luminous quasars and may bias the results of host galaxy studies.Comment: 6 pages including 2 color figures; proceedings of the 'QSO host galaxies: evolution and environment' conference, Leiden, August 200

    Ground state non-universality in the random field Ising model

    Full text link
    Two attractive and often used ideas, namely universality and the concept of a zero temperature fixed point, are violated in the infinite-range random-field Ising model. In the ground state we show that the exponents can depend continuously on the disorder and so are non-universal. However, we also show that at finite temperature the thermal order parameter exponent one half is restored so that temperature is a relevant variable. The broader implications of these results are discussed.Comment: 4 pages 2 figures, corrected prefactors caused by a missing factor of two in Eq. 2., added a paragraph in conclusions for clarit

    Inhibiting decoherence via ancilla processes

    Get PDF
    General conditions are derived for preventing the decoherence of a single two-state quantum system (qubit) in a thermal bath. The employed auxiliary systems required for this purpose are merely assumed to be weak for the general condition while various examples such as extra qubits and extra classical fields are studied for applications in quantum information processing. The general condition is confirmed with well known approaches towards inhibiting decoherence. A novel approach for decoherence-free quantum memories and quantum operations is presented by placing the qubit into the center of a sphere with extra qubits on its surface.Comment: pages 8, Revtex

    Accurate Atmospheric Parameters at Moderate Resolution Using Spectral Indices: Preliminary Application to the MARVELS Survey

    Full text link
    Studies of Galactic chemical and dynamical evolution in the solar neighborhood depend on the availability of precise atmospheric parameters (Teff, [Fe/H] and log g) for solar-type stars. Many large-scale spectroscopic surveys operate at low to moderate spectral resolution for efficiency in observing large samples, which makes the stellar characterization difficult due to the high degree of blending of spectral features. While most surveys use spectral synthesis, in this work we employ an alternative method based on spectral indices to determine the atmospheric parameters of a sample of nearby FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving power (R~12,000). We have developed three codes to automatically normalize the observed spectra, measure the equivalent widths of the indices and, through the comparison of those with values calculated with pre-determined calibrations, derive the atmospheric parameters of the stars. The calibrations were built using a sample of 309 stars with precise stellar parameters obtained from the analysis of high-resolution FEROS spectra. A validation test of the method was conducted with a sample of 30 MARVELS targets that also have reliable atmospheric parameters from high-resolution spectroscopic analysis. Our approach was able to recover the parameters within 80 K for Teff, 0.05 dex for [Fe/H] and 0.15 dex for log g, values that are lower or equal to the typical external uncertainties found between different high-resolution analyzes. An additional test was performed with a subsample of 138 stars from the ELODIE stellar library and the literature atmospheric parameters were recovered within 125 K for Teff, 0.10 dex for [Fe/H] and 0.29 dex for log g. These results show that the spectral indices are a competitive tool to characterize stars with the intermediate resolution spectra.Comment: Accepted for publication in AJ. Abstract edited to comply with arXiv standards regarding the number of character

    A Low Latitude Halo Stream around the Milky Way

    Get PDF
    We present evidence for a ring of stars in the plane of the Milky Way, extending at least from l = 180 deg to l = 227 deg; the ring could encircle the Galaxy. The low Galactic latitude structure is at a fairly constant distance of R=18±2R = 18 \pm 2 kpc from the Galactic Center above the Galactic plane, and has R=20±2R = 20 \pm 2 kpc in the region sampled below the Galactic plane. The evidence includes five hundred SDSS spectroscopic radial velocities of stars within 30 deg of the plane. The velocity dispersion of the stars associated with this structure is found to be 27 km/s at (l,b) = (198,-27), 22 km/s at (l,b) = (225, 28), 30 km/s at (l,b) = (188, 24), and 30 km/s at (l,b) = (182, 27) degrees. The structure co-rotates with the Galactic disk stars at 110±25110 \pm 25 km/s. The narrow measured velocity dispersion is inconsistent with power law spheroid or thick disk populations. We compare the velocity dispersion in this structure with the velocity dispersion of stars in the Sagittarius dwarf galaxy tidal stream, for which we measure a velocity dispersion of 20 km/s at (l,b) = (165, -55) degrees. We interpret our measurements as evidence for a tidally disrupted satellite of 2×1072 \times 10^7 to 5×1085 \times 10^8 solar masses which rings the Galaxy

    Resonant cancellation of off-resonant effects in a multilevel qubit

    Full text link
    Off-resonant effects are a significant source of error in quantum computation. This paper presents a group theoretic proof that off-resonant transitions to the higher levels of a multilevel qubit can be completely prevented in principle. This result can be generalized to prevent unwanted transitions due to qubit-qubit interactions. A simple scheme exploiting dynamic pulse control techniques is presented that can cancel transitions to higher states to arbitrary accuracy.Comment: 4 pages, Revtex, submitted for publicatio

    A twentieth century perspective on summer Antarctic pressure change and variability and contributions from tropical SSTs and ozone depletion

    Get PDF
    During the late 20th 33 Century, the Antarctic atmospheric circulation has changed and significantly influenced the overall Antarctic climate, through processes including a poleward shift of the circumpolar westerlies. However, little is known about the full spatial pattern of atmospheric pressure over the Antarctic continent prior to 1979. Here we investigate surface pressure changes across the entire Antarctic continent back to 1905 by developing a new summer pressure reconstruction poleward of 60°S. We find that only across East Antarctica are the recent pressures significantly lower than pressures in the early 20th 40 century; we also discern periods of significant positive pressure trends in the early 20th 41 century across the coastal South Atlantic sector of Antarctica. Climate model simulations reveal that both tropical sea surface temperature variability and other radiative forcing mechanisms, in addition to ozone depletion, have played an important role in forcing the recent observed negative trends
    • …
    corecore