229 research outputs found

    Can simple models predict large-scale surface ocean isoprene concentrations?

    Get PDF
    We use isoprene and related field measurements from three different ocean data sets together with remotely sensed satellite data to model global marine isoprene emissions. We show that using monthly mean satellite-derived chl a concentrations to parameterize isoprene with a constant chl a normalized isoprene production rate underpredicts the measured oceanic isoprene concentration by a mean factor of 19 ± 12. Improving the model by using phytoplankton functional type dependent production values and by decreasing the bacterial degradation rate of isoprene in the water column results in only a slight underestimation (factor 1.7 ± 1.2). We calculate global isoprene emissions of 0.21 Tg C for 2014 using this improved model, which is twice the value calculated using the original model. Nonetheless, the sea-to-air fluxes have to be at least 1 order of magnitude higher to account for measured atmospheric isoprene mixing ratios. These findings suggest that there is at least one missing oceanic source of isoprene and, possibly, other unknown factors in the ocean or atmosphere influencing the atmospheric values. The discrepancy between calculated fluxes and atmospheric observations must be reconciled in order to fully understand the importance of marine-derived isoprene as a precursor to remote marine boundary layer particle formation

    Detailed investigation of the role of buoy wind errors in buoyscatterometer disagreement

    Get PDF
    The comparison of equivalent neutral winds obtained from (a) four WHOI buoys in the subtropics and (b) scatterometer estimates at those locations reveals a very low root-mean-square difference (RMS) on the order of 0.5-0.7 m/s and a seasonal cycle in the RMS. To investigate this RMS, different buoy wind error sources were examined. Our buoys are particularly well suited to examine two important sources of buoy error: (1) redundant anemometers and a comparison with numerical flow simulations allow us to quantitatively assess flow distortion errors, and (2) one-minute sampling at the buoys allows us to examine the sensitivity of buoy temporal sampling/averaging in the buoy-scatterometer comparisons. The flow distortion can be estimated to up to 5% of the relative difference of the anemometers. Application of this error to the individual anemometer and subsequent comparison with scatterometer estimates show a good agreement. Application of a reasonable time averaging, subtraction of a mean bias, and application of a viscosity correction generally reduces the RMS but cannot explain the seasonal cycle of it

    Detailed investigation of the role of buoy wind errors in buoyscatterometer disagreement

    Get PDF
    The comparison of equivalent neutral winds obtained from (a) four WHOI buoys in the subtropics and (b) scatterometer estimates at those locations reveals a very low root-mean-square difference (RMS) on the order of 0.5-0.7 m/s and a seasonal cycle in the RMS. To investigate this RMS, different buoy wind error sources were examined. Our buoys are particularly well suited to examine two important sources of buoy error: (1) redundant anemometers and a comparison with numerical flow simulations allow us to quantitatively assess flow distortion errors, and (2) one-minute sampling at the buoys allows us to examine the sensitivity of buoy temporal sampling/averaging in the buoy-scatterometer comparisons. The flow distortion can be estimated to up to 5% of the relative difference of the anemometers. Application of this error to the individual anemometer and subsequent comparison with scatterometer estimates show a good agreement. Application of a reasonable time averaging, subtraction of a mean bias, and application of a viscosity correction generally reduces the RMS but cannot explain the seasonal cycle of it

    Barriers and facilitators to a task-shifted stroke prevention program for children with sickle cell anemia in a community hospital: A qualitative study

    Get PDF
    BACKGROUND: Children with sickle cell anemia (SCA) are at high risk for stroke. Protocols for stroke prevention including blood transfusions, screening for abnormal non-imaging transcranial Doppler (TCD) measurements, and hydroxyurea therapy are difficult to implement in low-resource environments like Nigeria. This study aimed to examine the contextual factors around TCD screening in a community hospital in Nigeria using qualitative interviews and focus groups. METHODS: We conducted a descriptive qualitative study in a community hospital in Kaduna, Nigeria, using focus groups and interviews. Interview guides and analysis were informed by the Consolidated Framework for Implementation Research (CFIR) framework and the Theory of Planned Behavior. Transcripts were coded and analyzed using an iterative deductive (CFIR)/Inductive (transcribed quotes) qualitative methodology. RESULTS: We conducted two focus groups and five interviews with health care workers (nurses and doctors) and hospital administrators, respectively. Themes identified key elements of the inner setting (clinic characteristics, resource availability, implementation climate, and tension for change), characteristics of individuals (normative, control, and behavioral beliefs), and the implementation process (engage, implement, and adopt), as well as factors that were influenced by external context, caregiver needs, team function, and intervention characteristics. Task shifting, which is already being used, was viewed by providers and administrators as a necessary strategy to implement TCD screening in a clinic environment that is overstressed and under-resourced, a community stressed by poverty, and a nation with an underperforming health system. CONCLUSION: Task shifting provides a viable option to improve health care by making more efficient use of already available human resources while rapidly expanding the human resource pool and building capacity for TCD screening of children with SCD that is more sustainable. TRIAL REGISTRATION: NCT05434000

    Characterization of Structural Features Controlling the Receptiveness of Empty Class II MHC Molecules

    Get PDF
    MHC class II molecules (MHC II) play a pivotal role in the cell-surface presentation of antigens for surveillance by T cells. Antigen loading takes place inside the cell in endosomal compartments and loss of the peptide ligand rapidly leads to the formation of a non-receptive state of the MHC molecule. Non-receptiveness hinders the efficient loading of new antigens onto the empty MHC II. However, the mechanisms driving the formation of the peptide inaccessible state are not well understood. Here, a combined approach of experimental site-directed mutagenesis and computational modeling is used to reveal structural features underlying “non-receptiveness.” Molecular dynamics simulations of the human MHC II HLA-DR1 suggest a straightening of the α-helix of the β1 domain during the transition from the open to the non-receptive state. The movement is mostly confined to a hinge region conserved in all known MHC molecules. This shift causes a narrowing of the two helices flanking the binding site and results in a closure, which is further stabilized by the formation of a critical hydrogen bond between residues αQ9 and βN82. Mutagenesis experiments confirmed that replacement of either one of the two residues by alanine renders the protein highly susceptible. Notably, loading enhancement was also observed when the mutated MHC II molecules were expressed on the surface of fibroblast cells. Altogether, structural features underlying the non-receptive state of empty HLA-DR1 identified by theoretical means and experiments revealed highly conserved residues critically involved in the receptiveness of MHC II. The atomic details of rearrangements of the peptide-binding groove upon peptide loss provide insight into structure and dynamics of empty MHC II molecules and may foster rational approaches to interfere with non-receptiveness. Manipulation of peptide loading efficiency for improved peptide vaccination strategies could be one of the applications profiting from the structural knowledge provided by this study

    Fortified breakfast cereal consumed daily for 12 wk leads to a significant improvement in micronutrient intake and micronutrient status in adolescent girls: a randomised controlled trial

    Get PDF
    Background: Poor micronutrient status is reported among adolescents across Europe and USA. This may be related to the well-documented decline in the regular consumption of breakfast by this group. The regular consumption of a breakfast cereal offers a possible means to improve micronutrient status; fortified cereal is likely to have enhanced benefit. A study was conducted to determine the efficacy of the regular consumption of a fortified cereal with milk, compared with unfortified cereal, consumed either as a breakfast or a supper, in improving micronutrient intake and micronutrient status of adolescent girls. Methods: A randomised, double-blind, placebo-controlled intervention trial was conducted in girls recruited at ages 16–19 years, from schools and colleges in Sheffield, UK. Girls were randomised to receive 50 g fortified or unfortified cereal, with 150 ml semi-skimmed milk, daily, for 12 weeks, as a breakfast or as a supper. Dietary intake was estimated using a 4-d food diary and blood collected for the assessment of nutritional status. Within-group changes were tested using a paired sample t test; two-way ANOVA was used to analyse effects of the intervention, with cereal type and time of consumption as factors, correcting for baseline values. The analysis was conducted on 71 girls who completed the study. Results: Consumption of unfortified cereal elicited an increase in the intake of vitamins B1, B2 and B6; consumption of fortified cereal elicited increases in vitamins B1, B2, B6, B12, folate and iron (P < 0.001) and of vitamin D (P = 0.007), all increases were significantly greater than for unfortified cereal. Consumption of the fortified cereal also led to a significant improvement in biomarkers of status for vitamins B2, B12, folate and of iron, compared with girls receiving the unfortified cereal, and maintained vitamin D status, in contrast with the girls receiving the unfortified cereal (P < 0.001). Conclusions: The daily consumption of cereal with milk for 12 weeks by adolescent girls, increased intakes of micronutrients. The consumption of fortified cereal elicited greater increases than for unfortified cereal and improved biomarkers of micronutrient status. The findings justify strategies to encourage the consumption of fortified cereal with milk by adolescents, either as a breakfast or a supper
    corecore