16 research outputs found

    Bayesian analysis of the species-specific lengthening of the growing season in two European countries and the influence of an insect pest

    Get PDF
    A recent lengthening of the growing season in mid and higher latitudes of the northern hemisphere is reported as a clear indicator for climate change impacts. Using data from Germany (1951–2003) and Slovenia (1961–2004), we study whether changes in the start, end, and length of the growing season differ among four deciduous broad-leaved tree species and countries, how the changes are related to temperature changes, and what might be the confounding effects of an insect attack. The functional behaviour of the phenological and climatological time series and their trends are not analysed by linear regression, but by a new Bayesian approach taking into account different models for the functional description (one change-point, linear, constant models). We find advanced leaf unfolding in both countries with the same species order (oak > horse chestnut, beech, and birch). However, this advance is non linear over time and more apparent in Germany with clear change-points in the late 1970s, followed by marked advances (on average 3.67 days decade−1 in the 2000s). In Slovenia, we find a more gradual advance of onset dates (on average 0.8 days decade−1 in the 2000s). Leaf colouring of birch, beech, and oak has been slightly delayed in the last 3 decades, especially in Germany, however with no clear functional behaviour. Abrupt changes in leaf colouring dates of horse chestnut with recent advancing onset dates can be linked across countries to damage by a newly emerging pest, the horse chestnut leaf-miner (Cameraria ohridella). The lengthening of the growing season, more distinct in Germany than in Slovenia (on average 4.2 and 1.0 days decade−1 in the 2000s, respectively), exhibits the same species order in both countries (oak > birch > beech). Damage by horse chestnut leaf-miner leads to reduced lengthening (Germany) and drastic shortening (Slovenia) of the horse chestnut growing season (-12 days decade−1 in the 2000s). Advanced spring leaf unfolding and lengthening of the growing season of oak, beech and birch are highly significantly related to increasing March temperatures in both countries. Only beech and oak leaf unfolding in Germany, which is generally observed later in the year than that of the other two species, is more closely correlated with April temperatures, which comparably exhibit marked change-points at the end of the 1970s

    Thoracolumbar fascia deformation during deadlifting and trunk extension in individuals with and without back pain

    Get PDF
    BackgroundAlterations in posture, lumbopelvic kinematics, and movement patterns are commonly seen in patients with low back pain. Therefore, strengthening the posterior muscle chain has been shown to result in significant improvement in pain and disability status. Recent studies suggest that thoracolumbar fascia (TLF) has a major impact on the maintenance of spinal stability and paraspinal muscle activity, and thus is likely to have an equal impact on deadlift performance.ObjectiveAim of the study was to evaluate the role of thoracolumbar fascia deformation (TFLD) during spinal movement in track and field athletes (TF) as well as individuals with and without acute low back pain (aLBP).MethodsA case–control study was performed with n = 16 aLBP patients (cases) and two control groups: untrained healthy individuals (UH, n = 16) and TF (n = 16). Participants performed a trunk extension task (TET) and a deadlift, being assessed for erector spinae muscle thickness (EST) and TLFD using high-resolution ultrasound imaging. Mean deadlift velocity (VEL) and deviation of barbell path (DEV) were measured by means of a three-axis gyroscope. Group differences for TLFD during the TET were examined using ANOVA. Partial Spearman rank correlations were calculated between TLFD and VEL adjusting for baseline covariates, EST, and DEV. TLFD during deadlifting was compared between groups using ANCOVA adjusting for EST, DEV, and VEL.ResultsTLFD during the TET differed significantly between groups. TF had the largest TLFD (−37.6%), followed by UH (−26.4%), while aLBP patients had almost no TLFD (−2.7%). There was a strong negative correlation between TLFD and deadlift VEL in all groups (r = −0.65 to −0.89) which was highest for TF (r = −0.89). TLFD during deadlift, corrected for VEL, also differed significantly between groups. TF exhibited the smallest TLFD (−11.9%), followed by aLBP patients (−21.4%), and UH (−31.9%).ConclusionTFLD maybe a suitable parameter to distinguish LBP patients and healthy individuals during lifting tasks. The cause-effect triangle between spinal movement, TFLD and movement velocity needs to be further clarified.Clinical trial registrationhttps://drks.de/register/de/trial/DRKS00027074/, German Clinical Trials Register DRKS00027074

    Expert consensus on the contraindications and cautions of foam rolling: an international delphi study

    Get PDF
    Background: Foam rolling is a type of self-massage using tools such as foam or roller sticks. However, to date, there is no consensus on contraindications and cautions of foam rolling. A methodological approach to narrow that research gap is to obtain reliable opinions of expert groups. The aim of the study was to develop experts’ consensus on contraindications and cautions of foam rolling by means of a Delphi process. Methods: An international three-round Delphi study was conducted. Academic experts, defined as having (co-) authored at least one PubMed-listed paper on foam rolling, were invited to participate. Rounds 1 and 2 involved generation and rating of a list of possible contraindications and cautions of foam rolling. In round 3, participants indicated their agreement on contraindications and cautions for a final set of conditions. Consensus was evaluated using a priori defined criteria. Consensus on contraindications and cautions was considered as reached if more than 70% of participating experts labeled the respective item as contraindication and contraindication or caution, respectively, in round 3. Results: In the final Delphi process round, responses were received from 37 participants. Panel participants were predominantly sports scientists ( n = 21), physiotherapists ( n = 6), and medical professionals ( n = 5). Consensus on contraindications was reached for open wounds (73% agreement) and bone fractures (84%). Consensus on cautions was achieved for local tissue inflammation (97%), deep vein thrombosis (97%), osteomyelitis (94%), and myositis ossificans (92%). The highest impact/severity of an adverse event caused by contraindication/cautions was estimated for bone fractures, deep vein thrombosis, and osteomyelitis. Discussion: The mechanical forces applied through foam rolling can be considered as potential threats leading to adverse events in the context of the identified contraindications and cautions. Further evaluations by medical professionals as well as the collection of clinical data are needed to assess the risks of foam rolling and to generate guidance for different applications and professional backgrounds

    Immediate Effects of Myofascial Release on the Thoracolumbar Fascia and Osteopathic Treatment for Acute Low Back Pain on Spine Shape Parameters: A Randomized, Placebo-Controlled Trial

    No full text
    Background: Spine shape parameters, such as leg length and kyphotic or lordotic angle, are influenced by low back pain. There is also evidence that the thoracolumbar fascia plays a role in such pathologies. This study examined the immediate effects of a myofascial release (MFR) technique on the thoracolumbar fascia and of an osteopathic treatment (OMT) on postural parameters in patients with acute low back pain (aLBP). Methods: This study was a single-blind randomized placebo-controlled trial. Seventy-one subjects (43.8 ± 10.5 years) suffering from aLBP were randomly and blindedly assigned to three groups to be treated with MFR, OMT, or a placebo intervention. Spinal shape parameters (functional leg length discrepancy (fLLD), kyphotic angle, and lordotic angle) were measured before and after the intervention using video raster stereography. Results: Within the MFR group, fLLD reduced by 5.2 mm, p < 0.001 and kyphotic angle by 8.2 degrees, p < 0.001. Within the OMT group, fLLD reduced by 4.5 mm, p < 0.001, and kyphotic angle by 8.4°, p = 0.007. Conclusion: MFR and OMT have an influence on fLLD and the kyphotic angle in aLBP patients. The interventions could have a regulating effect on the impaired neuromotor control of the lumbar muscles

    Spatial variation in onset dates and trends in phenology across Europe

    No full text
    This study presents an approach based on the Bayesian paradigm to identify and compare observed changes in the timing of phenological events in plants. Previous studies have been based mostly on linear trend analyses. Our comprehensive phenological dataset consists of long-term observational records (>30 yr) within the 1951–1999 period across central Europe, from which we selected 2600 quality-checked records of 90 phenophases (mostly in spring and summer). We estimated the model probabilities and rates of change (trends) of 3 competing models: (1) constant (mean onset date), (2) linear (constant trend over time) and (3) change point (time-varying change). The change point model involves the selection of 2 linear segments which match at a particular time. The matching point is estimated by an examination of all possible breaks weighted by their respective change point probability. Generally we found more pronounced changes in maritime Western and Central Europe. The functional behaviour of all 2600 time series was best represented by the change point model (62%), followed by the linear model (24%); the constant model was the least preferred alternative. Therefore, non-linear phenological changes were by far the most commonly observed feature, especially in Western Europe. Regression analyses of change point model probabilities against geographic coordinates and altitude resulted in some significant negative regression coefficients with longitude; in contrast, the constant model probabilities increased with longitude. Even when differences between locations across Europe existed, an overall trend towards earlier flowering was determined at most locations. Multiple regressions confirmed that mean advancing trends in the 1990s were stronger in the northwestern part of the study area

    Influence of Sports Activity, Thoracolumbar Fascia Morphology and Myofascial Release Treatment on Lumbar Microcirculation: A Randomized, Placebo-Controlled Trial

    No full text
    Background: Inflammatory processes in the thoracolumbar fascia lead to thickening, compaction, and fibrosis and are thought to contribute to the development of nonspecific low back pain (nLBP). The circulation of fascial tissue may play a critical role in this process, as it may promote hypoxia-induced inflammation. This study examined the influence of thoracolumbar fascia morphology (TLFM), sports activity (SA), body mass index (BMI), pain, and a set of myofascial release (MFR) techniques on blood flow data (BFD) of lumbar myofascial tissue. Methods: This study was a single-blind, randomized, placebo-controlled trial. Thirty pain-free subjects (40.5 ± 14.1 years) were randomly assigned to two groups treated with MFR or a placebo intervention. Som-mers'd correlations between pain, SA, BMI, and TLFM were calculated at baseline. The effects of TFLM and MFR on BFD were determined. Results: There were strong correlations between pain (d = -0.648), SA (d = 0.681), BMI (d = -0.798), and TLFM. Blood flow was significantly different between disorganized and organized TLFM (p < 0.0001). The MFR group had a significant increase in blood flow after treatment (31.6%) and at follow-up (48.7%) compared with the PLC group. Conclusion: Circulatory restrictions caused by disorganized TFLM could lead to hypoxia-induced inflammation, which likely results in pain and impaired proprioceptive function and contributes to the development of nLBP. The deformation and altered morphology associated with blood vessel and free nerve termi-nal dysfunction were likely positively affected by the intervention in this study

    Associations between Deformation of the Thoracolumbar Fascia and Activation of the Erector Spinae and Multifidus Muscle in Patients with Acute Low Back Pain and Healthy Controls: A Matched Pair Case-Control Study

    No full text
    Background: The thoracolumbar fascia (TLF) is thought to play a role in the development of LBP, but it is not yet clear which factor of TLF changes is a cause and which is an effect. Therefore, some studies used the cross-correlation function (CCR) to reveal time-dependent relationships between biomechanical and neuromotor factors. Methods: Ten patients with acute low back pain (aLBP) were matched to healthy controls. Simultaneous recording of surface electromyography (sEMG) of the erector spinae and multifidus muscle (ESM) and dynamic ultrasound (US) images of TLF deformation were performed during trunk extension. CCR functions and Granger causality (GC) were used to describe the relationship between the two measures. Results: CCR time lags were significant higher in the aLBP group (p = 0.04). GC showed a direct effect of TLF deformation on ESM activation only in the aLBP group (p < 0.03). Conclusions: The results suggest that in aLBP, ESM activity is significantly affected by TLF, whereas this relationship is completely random in healthy subjects studied with CCR and GC comparisons of dynamic US imaging and sEMG data signals. Fascia-related disturbances in neuromotor control, particularly due to altered muscle spindle functions, are suspected as a possible mechanism behind this

    Immediate Effects of Myofascial Release Treatment on Lumbar Microcirculation: A Randomized, Placebo-Controlled Trial

    No full text
    (1) Background: Inflammatory processes in the thoracolumbar fascia (TLF) lead to thickening, compaction, and fibrosis and are thought to contribute to the development of nonspecific low back pain (nLBP). The blood flow (BF) of fascial tissue may play a critical role in this process, as it may promote hypoxia-induced inflammation. The primary objective of the study was to examine the immediate effects of a set of myofascial release (MFR) techniques on the BF of lumbar myofascial tissue. The secondary objectives were to evaluate the influence of TLF morphology (TLFM), physical activity (PA), and body mass index (BMI) on these parameters and their correlations with each other. (2) Methods: This study was a single-blind, randomized, placebo-controlled trial. Thirty pain-free subjects (40.5 ± 14.1 years) were randomly assigned to two groups treated with MFR or a placebo intervention. Correlations between PA, BMI, and TLFM were calculated at baseline. The effects of MFR and TLFM on BF (measured with white light and laser Doppler spectroscopy) were determined. (3) Results: The MFR group had a significant increase in BF after treatment (31.6%) and at follow-up (48.7%) compared with the placebo group. BF was significantly different between disorganized and organized TLFM (p < 0.0001). There were strong correlations between PA (r = −0.648), PA (d = 0.681), BMI (r = −0.798), and TLFM. (4) Conclusions: Impaired blood flow could lead to hypoxia-induced inflammation, possibly resulting in pain and impaired proprioceptive function, thereby likely contributing to the development of nLBP. Fascial restrictions of blood vessels and free nerve endings, which are likely associated with TLFM, could be positively affected by the intervention in this study

    Immediate Effects of Myofascial Release Treatment on Lumbar Microcirculation: A Randomized, Placebo-Controlled Trial

    No full text
    (1) Background: Inflammatory processes in the thoracolumbar fascia (TLF) lead to thickening, compaction, and fibrosis and are thought to contribute to the development of nonspecific low back pain (nLBP). The blood flow (BF) of fascial tissue may play a critical role in this process, as it may promote hypoxia-induced inflammation. The primary objective of the study was to examine the immediate effects of a set of myofascial release (MFR) techniques on the BF of lumbar myofascial tissue. The secondary objectives were to evaluate the influence of TLF morphology (TLFM), physical activity (PA), and body mass index (BMI) on these parameters and their correlations with each other. (2) Methods: This study was a single-blind, randomized, placebo-controlled trial. Thirty pain-free subjects (40.5 ± 14.1 years) were randomly assigned to two groups treated with MFR or a placebo intervention. Correlations between PA, BMI, and TLFM were calculated at baseline. The effects of MFR and TLFM on BF (measured with white light and laser Doppler spectroscopy) were determined. (3) Results: The MFR group had a significant increase in BF after treatment (31.6%) and at follow-up (48.7%) compared with the placebo group. BF was significantly different between disorganized and organized TLFM (p < 0.0001). There were strong correlations between PA (r = −0.648), PA (d = 0.681), BMI (r = −0.798), and TLFM. (4) Conclusions: Impaired blood flow could lead to hypoxia-induced inflammation, possibly resulting in pain and impaired proprioceptive function, thereby likely contributing to the development of nLBP. Fascial restrictions of blood vessels and free nerve endings, which are likely associated with TLFM, could be positively affected by the intervention in this study
    corecore