343 research outputs found

    Childhood cancer : A global perspective

    Get PDF

    European Code against Cancer 4th Edition:Medical exposures, including hormone therapy, and cancer

    Get PDF
    AbstractThe 4th edition of the European Code against Cancer recommends limiting – or avoiding when possible – the use of hormone replacement therapy (HRT) because of the increased risk of cancer, nevertheless acknowledging that prescription of HRT may be indicated under certain medical conditions. Current evidence shows that HRT, generally prescribed as menopausal hormone therapy, is associated with an increased risk of cancers of the breast, endometrium, and ovary, with the risk pattern depending on factors such as the type of therapy (oestrogen-only or combined oestrogen–progestogen), duration of treatment, and initiation according to the time of menopause. Carcinogenicity has also been established for anti-neoplastic agents used in cancer therapy, immunosuppressants, oestrogen–progestogen contraceptives, and tamoxifen. Medical use of ionising radiation, an established carcinogen, can provide major health benefits; however, prudent practices need to be in place, with procedures and techniques providing the needed diagnostic information or therapeutic gain with the lowest possible radiation exposure. For pharmaceutical drugs and medical radiation exposure with convincing evidence on their carcinogenicity, health benefits have to be balanced against the risks; potential increases in long-term cancer risk should be considered in the context of the often substantial and immediate health benefits from diagnosis and/or treatment. Thus, apart from HRT, no general recommendations on reducing cancer risk were given for carcinogenic drugs and medical radiation in the 4th edition of European Code against Cancer. It is crucial that the application of these measures relies on medical expertise and thorough benefit–risk evaluation. This also pertains to cancer-preventive drugs, and self-medication with aspirin or other potential chemopreventive drugs is strongly discouraged because of the possibility of serious, potentially lethal, adverse events

    European Code against Cancer 4th Edition: Environment, occupation and cancer

    Get PDF
    AbstractPeople are exposed throughout life to a wide range of environmental and occupational pollutants from different sources at home, in the workplace or in the general environment – exposures that normally cannot be directly controlled by the individual. Several chemicals, metals, dusts, fibres, and occupations have been established to be causally associated with an increased risk of specific cancers, such as cancers of the lung, skin and urinary bladder, and mesothelioma. Significant amounts of air pollutants – mainly from road transport and industry – continue to be emitted in the European Union (EU); an increased occurrence of lung cancer has been attributed to air pollution even in areas below the EU limits for daily air pollution. Additionally, a wide range of pesticides as well as industrial and household chemicals may lead to widespread human exposure, mainly through food and water. For most environmental pollutants, the most effective measures are regulations and community actions aimed at reducing and eliminating the exposures. Thus, it is imperative to raise awareness about environmental and occupational carcinogens in order to motivate individuals to be proactive in advocating protection and supporting initiatives aimed at reducing pollution. Regulations are not homogeneous across EU countries, and protective measures in the workplace are not used consistently by all workers all the time; compliance with regulations needs to be continuously monitored and enforced. Therefore, the recommendation on Environment and Occupation of the 4th edition of the European Code against Cancer, focusing on what individuals can do to reduce their cancer risk, reads: “In the workplace, protect yourself against cancer-causing substances by following health and safety instructions.

    Hematologic malignancies in South Africa 2000-2006: analysis of data reported to the National Cancer Registry.

    Get PDF
    Little is known about the incidence patterns of hematologic malignancies in Sub-Saharan Africa, including South Africa. We estimated incidence rates of pathology-confirmed adult cases of leukemia, myeloma and related diseases (myeloma), Hodgkin lymphoma (HL), and non-Hodgkin lymphoma (NHL) reported to the National Cancer Registry of South Africa (NCR) between 2000 and 2006, by age, gender, and population group (Black, White, Coloured, Asian/Indian). Gender-specific age-standardized rates were calculated overall and by population group and incidence rate ratios (IRRs) were estimated using Poisson regression models. Between 2000 and 2006, there were 14662 cases of leukemia, myeloma, HL, and NHL reported to the registry. Incidence rates of reported hematologic malignancies were generally 20-50% higher among males than females. Our analyses suggested marked differences in the rates of reported hematologic malignancies by population group which were most pronounced when comparing the White versus Black population groups (IRRs ranging from 1.6 for myeloma to 3.8 for HL for males and females combined). Challenges related to diagnosis and reporting of cancers may play a role in the patterns observed by population group while the set-up of the NCR (pathology-based) could lead to some degree of under-ascertainment in all groups. This is the first country-wide report of the incidence of hematologic malignancies in South Africa. Despite challenges, it is important to analyze and report available national cancer incidence data to raise awareness of the cancer burden and to characterize patterns by demographic characteristics so as ultimately to improve the provision of cancer-related health care

    Use of mobile phones and risk of brain tumours: update of Danish cohort study

    Get PDF
    Objective To investigate the risk of tumours in the central nervous system among Danish mobile phone subscribers

    Africa’s oesophageal cancer corridor: geographic variations in incidence correlate with certain micronutrient deficiencies

    Get PDF
    Background The aetiology of Africa’s easterly-lying corridor of squamous cell oesophageal cancer is poorly understood. Micronutrient deficiencies have been implicated in this cancer in other areas of the world, but their role in Africa is unclear. Without prospective cohorts, timely insights can instead be gained through ecological studies. Methods Across Africa we assessed associations between a country’s oesophageal cancer incidence rate and food balance sheet-derived estimates of mean national dietary supplies of 7 nutrients: calcium (Ca), copper (Cu), iron (Fe), iodine (I), magnesium (Mg), selenium (Se) and zinc (Zn). We included 32 countries which had estimates of dietary nutrient supplies and of better-quality GLOBCAN 2012 cancer incidence rates. Bayesian hierarchical Poisson lognormal models were used to estimate incidence rate ratios for oesophageal cancer associated with each nutrient, adjusted for age, gender, energy intake, phytate, smoking and alcohol consumption, as well as their 95% posterior credible intervals (CI). Adult dietary deficiencies were quantified using an estimated average requirements (EAR) cut-point approach. Results Adjusted incidence rate ratios for oesophageal cancer associated with a doubling of mean nutrient supply were: for Fe 0.49 (95% CI: 0.29–0.82); Mg 0.58 (0.31–1.08); Se 0.40 (0.18–0.90); and Zn 0.29 (0.11–0.74). There were no associations with Ca, Cu and I. Mean national nutrient supplies exceeded adult EARs for Mg and Fe in most countries. For Se, mean supplies were less than EARs (both sexes) in 7 of the 10 highest oesophageal cancer ranking countries, compared to 23% of remaining countries. For Zn, mean supplies were less than the male EARs in 8 of these 10 highest ranking countries compared to in 36% of other countries

    Widening the Understanding of Risk Approaches by Comparing Definitions from Different Disciplines

    Get PDF
    The aim of this chapter is to critically reflect definitions of hazard, risk, and risk perception and their assessments used in different scientific disciplines and give examples of the potential implications for scientific discussions, knowledge management, and risk communication. Scientists with backgrounds in public health, psychology, environmental health, occupational health, engineering, sociology, and medicine were asked for a definition of hazard, risk, risk assessment, and risk perception seen from their specific scientific disciplines. Hazard is generally seen as an adverse event or condition. For most risk definitions, probability and severity are important aspects. Often a quantification of risk is desired, whereas risk perception is seen as a subjective appraisal and a cognitive construct. As risk perceptions are based on a combination of knowledge and individual values and affects, it may not provide a reliable guidance for risk management decisions on a societal level. Discipline differences are mainly connected to terminology and interpretation of key concepts, but the differences are based on different tasks and perspectives. For dealing with controversies in science across disciplines, an acceptance and appreciation of terminology and perspectives from different scientific disciplines are needed to ensure a transparent risk assessment process
    corecore