707 research outputs found
Precision spectroscopy of the 3s-3p fine structure doublet in Mg+
We apply a recently demonstrated method for precision spectroscopy on strong
transitions in trapped ions to measure both fine structure components of the
3s-3p transition in 24-Mg+ and 26-Mg+. We deduce absolute frequency reference
data for transition frequencies, isotope shifts and fine structure splittings
that are in particular useful for comparison with quasar absorption spectra,
which test possible space-time variations of the fine structure constant. The
measurement accuracy improves previous literature values, when existing, by
more than two orders of magnitude
The H.E.S.S. multi-messenger program
Based on fundamental particle physics processes like the production and
subsequent decay of pions in interactions of high-energy particles, close
connections exist between the acceleration sites of high-energy cosmic rays and
the emission of high-energy gamma rays and high-energy neutrinos. In most cases
these connections provide both spatial and temporal correlations of the
different emitted particles. The combination of the complementary information
provided by these messengers allows to lift ambiguities in the interpretation
of the data and enables novel and highly sensitive analyses. In this
contribution the H.E.S.S. multi-messenger program is introduced and described.
The current core of this newly installed program is the combination of
high-energy neutrinos and high-energy gamma rays. The search for gamma-ray
emission following gravitational wave triggers is also discussed. Furthermore,
the existing program for following triggers in the electromagnetic regime was
extended by the search for gamma-ray emission from Fast Radio Bursts (FRBs). An
overview over current and planned analyses is given and recent results are
presented.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherland
Umbral Dynamics in the Near Infrared Continuum
We detected peaks of oscillatory power at 3 and ~6.5 minutes in the umbra of
the central sunspot of the active region NOAA AR 10707 in data obtained in the
near infrared (NIR) continuum at 1565.7 nm. The NIR dataset captured umbral
dynamics around 50 km below the photospheric level. The umbra does not
oscillate as a whole, but rather in distinct parts that are distributed over
the umbral surface. The most powerful oscillations, close to a period of ~ 6.5,
do not propagate upward. We noted a plethora of large umbral dots that
persisted for more than 30 minutes and stayed in the same locations. The peaks
of oscillatory power above the detected umbral dots are located at 3 and 5
minutes oscillations, but are very weak in comparison with the oscillations of
~ 6.5 minutes.Comment: 16 pages, 8 figures, accepted in Ap
Efficiency of choice set generation methods for bicycle routes
The current study analyses the efficiency of choice set generation methods for bicycle routes and proposes the extension of cost functions to bicycle-oriented factors not limited to distance and time. Three choice set generation methods for route choice were examined in their ability to generate relevant and heterogeneous routes: doubly stochastic generation function, breadth first search on link elimination, and branch & bound algorithm. Efficiency of the methods was evaluated for a high-resolution network by comparing the performances with four multiattribute cost functions accounting for scenic routes, dedicated cycle lanes, and road type. Data consisted of 778 bicycle trips traced by GPS and carried out by 139 persons living in the Greater Copenhagen Area, in Denmark. Results suggest that both the breadth first search on link elimination and the doubly stochastic generation function generated realistic routes, while the former outperformed in computation cost and the latter produced more heterogeneous routes
Centaurus A at Ultra-High Energies
We review the importance of Centaurus A in high energy astrophysics as a
nearby object with many of the properties expected of a major source of very
high energy cosmic rays and gamma-rays. We examine observational techniques and
the results so far obtained in the energy range from 200 GeV to above 100 EeV
and attempt to fit those data with expectations of Centaurus A as an
astrophysical source from VHE to UHE energies.Comment: 11 pages, 4 figures, accepted for publication in PAS
Universality of the Small-Scale Dynamo Mechanism
We quantify possible differences between turbulent dynamo action in the Sun
and the dynamo action studied in idealized simulations. For this purpose we
compare Fourier-space shell-to-shell energy transfer rates of three
incrementally more complex dynamo simulations: an incompressible, periodic
simulation driven by random flow, a simulation of Boussinesq convection, and a
simulation of fully compressible convection that includes physics relevant to
the near-surface layers of the Sun. For each of the simulations studied, we
find that the dynamo mechanism is universal in the kinematic regime because
energy is transferred from the turbulent flow to the magnetic field from
wavenumbers in the inertial range of the energy spectrum. The addition of
physical effects relevant to the solar near-surface layers, including
stratification, compressibility, partial ionization, and radiative energy
transport, does not appear to affect the nature of the dynamo mechanism. The
role of inertial-range shear stresses in magnetic field amplification is
independent from outer-scale circumstances, including forcing and
stratification. Although the shell-to-shell energy transfer functions have
similar properties to those seen in mean-flow driven dynamos in each simulation
studied, the saturated states of these simulations are not universal because
the flow at the driving wavenumbers is a significant source of energy for the
magnetic field.Comment: 16 pages, 9 figures, accepted for publication in Ap
Properties of Umbral Dots as Measured from the New Solar Telescope Data and MHD Simulations
We studied bright umbral dots (UDs) detected in a moderate size sunspot and
compared their statistical properties to recent MHD models. The study is based
on high resolution data recorded by the New Solar Telescope at the Big Bear
Solar Observatory and 3D MHD simulations of sunspots. Observed UDs, living
longer than 150 s, were detected and tracked in a 46 min long data set, using
an automatic detection code. Total 1553 (620) UDs were detected in the
photospheric (low chromospheric) data. Our main findings are: i) none of the
analyzed UDs is precisely circular, ii) the diameter-intensity relationship
only holds in bright umbral areas, and iii) UD velocities are inversely related
to their lifetime. While nearly all photospheric UDs can be identified in the
low chromospheric images, some small closely spaced UDs appear in the low
chromosphere as a single cluster. Slow moving and long living UDs seem to exist
in both the low chromosphere and photosphere, while fast moving and short
living UDs are mainly detected in the photospheric images. Comparison to the 3D
MHD simulations showed that both types of UDs display, on average, very similar
statistical characteristics. However, i) the average number of observed UDs per
unit area is smaller than that of the model UDs, and ii) on average, the
diameter of model UDs is slightly larger than that of observed ones.Comment: Accepted by the AP
Flux-loss of buoyant ropes interacting with convective flows
We present 3-d numerical magneto-hydrodynamic simulations of a buoyant,
twisted magnetic flux rope embedded in a stratified, solar-like model
convection zone. The flux rope is given an initial twist such that it neither
kinks nor fragments during its ascent. Moreover, its magnetic energy content
with respect to convection is chosen so that the flux rope retains its basic
geometry while being deflected from a purely vertical ascent by convective
flows. The simulations show that magnetic flux is advected away from the core
of the flux rope as it interacts with the convection. The results thus support
the idea that the amount of toroidal flux stored at or near the bottom of the
solar convection zone may currently be underestimated.Comment: 5 pages, 3 figures. Accepted for publication in Astronomy &
Astrophysic
Bright points in the quiet Sun as observed in the visible and near-UV by the balloon-borne observatory Sunrise
Bright points (BPs) are manifestations of small magnetic elements in the
solar photosphere. Their brightness contrast not only gives insight into the
thermal state of the photosphere (and chromosphere) in magnetic elements, but
also plays an important role in modulating the solar total and spectral
irradiance. Here we report on simultaneous high-resolution imaging and
spectropolarimetric observations of BPs using Sunrise balloon-borne observatory
data of the quiet Sun at disk center. BP contrasts have been measured between
214 nm and 525 nm, including the first measurements at wavelengths below 388
nm. The histograms of the BP peak brightness show a clear trend toward broader
contrast distributions and higher mean contrasts at shorter wavelengths. At 214
nm we observe a peak brightness of up to five times the mean quiet-Sun value,
the highest BP contrast so far observed. All BPs are associated with a magnetic
signal, although in a number of cases it is surprisingly weak. Most of the BPs
show only weak downflows, the mean value being 240 m/s, but some display strong
down- or upflows reaching a few km/s.Comment: Accepted for publication in The Astrophysical Journal Letters on
September 08 201
A digital feedback system for advanced ion manipulation techniques in Penning traps
The possibility to apply active feedback to a single ion in a Penning trap
using a fully digital system is demonstrated. Previously realized feedback
systems rely on analog circuits that are susceptible to environmental
fluctuations and long term drifts, as well as being limited to the specific
task they were designed for. The presented system is implemented using an
FPGA-based platform (STEMlab), offering greater flexibility, higher temporal
stability and the possibility for highly dynamic variation of feedback
parameters. The system's capabilities were demonstrated by applying feedback to
the ion detection system primarily consisting of a resonant circuit. This
allowed shifts in its resonance frequency of up to several kHz and free
modification of its quality factor within two orders of magnitude, which
reduces the temperature of a single ion by a factor of 6. Furthermore, a
phase-sensitive detection technique for the axial ion oscillation was
implemented, which reduces the current measurement time by two orders of
magnitude while simultaneously eliminating model-related systematic
uncertainties. The use of FPGA technology allowed the implementation of a
fully-featured data acquisition system, making it possible to realize feedback
techniques that require constant monitoring of the ion signal. This was
successfully used to implement a single-ion self-excited oscillator.Comment: The following article has been accepted by Review of Scientific
Instruments. After it is published, it will be found at
https://aip.scitation.org/journal/rs
- …