23 research outputs found
The FALCON concept: multi-object spectroscopy combined with MCAO in near-IR
A large fraction of the present-day stellar mass was formed between z=0.5 and
z~3 and our understanding of the formation mechanisms at work at these epochs
requires both high spatial and high spectral resolution: one shall
simultaneously} obtain images of objects with typical sizes as small as
1-2kpc(~0''.1), while achieving 20-50 km/s (R >= 5000) spectral resolution. The
obvious instrumental solution to adopt in order to tackle the science goal is
therefore a combination of multi-object 3D spectrograph with multi-conjugate
adaptive optics in large fields. A partial, but still competitive correction
shall be prefered, over a much wider field of view. This can be done by
estimating the turbulent volume from sets of natural guide stars, by optimizing
the correction to several and discrete small areas of few arcsec2 selected in a
large field (Nasmyth field of 25 arcmin) and by correcting up to the 6th, and
eventually, up to the 60th Zernike modes. Simulations on real extragalactic
fields, show that for most sources (>80%), the recovered resolution could reach
0".15-0".25 in the J and H bands. Detection of point-like objects is improved
by factors from 3 to >10, when compared with an instrument without adaptive
correction. The proposed instrument concept, FALCON, is equiped with deployable
mini-integral field units (IFUs), achieving spectral resolutions between R=5000
and 20000. Its multiplex capability, combined with high spatial and spectral
resolution characteristics, is a natural ground based complement to the next
generation of space telescopes.Comment: ESO Workshop Proceedings: Scientific Drivers for ESO Future VLT/VLTI
Instrumentation, 10 pages and 5 figure
Spectroscopic survey of the Galaxy with Gaia- I. Design and performance of the Radial Velocity Spectrometer
The definition and optimization studies for the Gaia satellite spectrograph, the ‘radial velocity spectrometer' (RVS), converged in late 2002 with the adoption of the instrument baseline. This paper reviews the characteristics of the selected configuration and presents its expected performance. The RVS is a 2.0 × 1.6 degree integral field spectrograph, dispersing the light of all sources entering its field of view with a resolving power R=λ/Δλ= 11 500 over the wavelength range [848, 874] nm. The RVS will continuously and repeatedly scan the sky during the 5‐yr Gaia mission. On average, each source will be observed 102 times over this period. The RVS will collect the spectra of about 100-150 million stars up to magnitude V≃ 17-18. At the end of the mission, the RVS will provide radial velocities with precisions of ∼2 km s−1 at V= 15 and ∼15-20 km s−1 at V= 17, for a solar‐metallicity G5 dwarf. The RVS will also provide rotational velocities, with precisions (at the end of the mission) for late‐type stars of σvsin i≃ 5 km s−1 at V≃ 15 as well as atmospheric parameters up to V≃ 14-15. The individual abundances of elements such as silicon and magnesium, vital for the understanding of Galactic evolution, will be obtained up to V≃ 12-13. Finally, the presence of the 862.0‐nm diffuse interstellar band (DIB) in the RVS wavelength range will make it possible to derive the three‐dimensional structure of the interstellar reddenin
Recommended from our members
The European Solar Telescope
The European Solar Telescope (EST) is a project aimed at studying the magnetic connectivity of the solar atmosphere, from the deep photosphere to the upper chromosphere. Its design combines the knowledge and expertise gathered by the European solar physics community during the construction and operation of state-of-the-art solar telescopes operating in visible and near-infrared wavelengths: the Swedish 1m Solar Telescope, the German Vacuum Tower Telescope and GREGOR, the French Télescope Héliographique pour l'Étude du Magnétisme et des Instabilités Solaires, and the Dutch Open Telescope. With its 4.2 m primary mirror and an open configuration, EST will become the most powerful European ground-based facility to study the Sun in the coming decades in the visible and near-infrared bands. EST uses the most innovative technological advances: the first adaptive secondary mirror ever used in a solar telescope, a complex multi-conjugate adaptive optics with deformable mirrors that form part of the optical design in a natural way, a polarimetrically compensated telescope design that eliminates the complex temporal variation and wavelength dependence of the telescope Mueller matrix, and an instrument suite containing several (etalon-based) tunable imaging spectropolarimeters and several integral field unit spectropolarimeters. This publication summarises some fundamental science questions that can be addressed with the telescope, together with a complete description of its major subsystems
The European Solar Telescope
The European Solar Telescope (EST) is a project aimed at studying the magnetic connectivity of the solar atmosphere, from the deep photosphere to the upper chromosphere. Its design combines the knowledge and expertise gathered by the European solar physics community during the construction and operation of state-of-the-art solar telescopes operating in visible and near-infrared wavelengths: the Swedish 1m Solar Telescope, the German Vacuum Tower Telescope and GREGOR, the French Télescope Héliographique pour l’Étude du Magnétisme et des Instabilités Solaires, and the Dutch Open Telescope. With its 4.2 m primary mirror and an open configuration, EST will become the most powerful European ground-based facility to study the Sun in the coming decades in the visible and near-infrared bands. EST uses the most innovative technological advances: the first adaptive secondary mirror ever used in a solar telescope, a complex multi-conjugate adaptive optics with deformable mirrors that form part of the optical design in a natural way, a polarimetrically compensated telescope design that eliminates the complex temporal variation and wavelength dependence of the telescope Mueller matrix, and an instrument suite containing several (etalon-based) tunable imaging spectropolarimeters and several integral field unit spectropolarimeters. This publication summarises some fundamental science questions that can be addressed with the telescope, together with a complete description of its major subsystems
Four Decades of Advances from MSDP to S4I and SLED Imaging Spectrometers
The Multichannel Subtractive Double Pass (MSDP) is an imaging spectroscopy
technique, which allows observations of spectral line profiles over a 2D field
of view with high spatial and temporal resolution. It has been intensively used
since 1977 on various spectrographs (Meudon, Pic du Midi, the German Vacuum
Tower Telescope, THEMIS, Wroc{\l}aw). We summarize previous developments and
describe the capabilities of a new design that has been developed at Meudon and
that has higher spectral resolution and increased channel number: Spectral
Sampling with Slicer for Solar Instrumentation (S4I), which can be combined
with a new and fast polarimetry analysis. This new generation MSDP technique is
well adapted to large telescopes. Also presented are the goals of a derived
compact version of the instrument, the Solar Line Emission Dopplerometer
(SLED), dedicated to dynamic studies of coronal loops observed in the forbidden
iron lines, and prominences. It is designed for observing total solar eclipses,
and for deployment on the Wroc{\l}aw and Lomnicky peak coronagraphs
respectively for prominence and coronal observations.Comment: to be published in "Solar Physics" (Springer
WEAVE an overview and status update
The WHT Enhanced Area Velocity Explorer is a high multiplex, multi-object spectrograph that will equip the prime focus of the WHT 4.2m telescope. The instrument is currently in the construction phase and several components have already been procured. I will give a short overview of the instrument and of the project and its status. The French participation is done through CNRS - Institut National des Sciences de l'Univers and the technical activity is carried out, at this stage, at GEPI, Observatoire de Paris
WEAVE an overview and status update
International audienceThe WHT Enhanced Area Velocity Explorer is a high multiplex, multi-object spectrograph that will equip the prime focus of the WHT 4.2m telescope. The instrument is currently in the construction phase and several components have already been procured. I will give a short overview of the instrument and of the project and its status. The French participation is done through CNRS - Institut National des Sciences de l'Univers and the technical activity is carried out, at this stage, at GEPI, Observatoire de Paris
WEAVE an overview and status update
International audienceThe WHT Enhanced Area Velocity Explorer is a high multiplex, multi-object spectrograph that will equip the prime focus of the WHT 4.2m telescope. The instrument is currently in the construction phase and several components have already been procured. I will give a short overview of the instrument and of the project and its status. The French participation is done through CNRS - Institut National des Sciences de l'Univers and the technical activity is carried out, at this stage, at GEPI, Observatoire de Paris
WEAVE an overview and status update
International audienceThe WHT Enhanced Area Velocity Explorer is a high multiplex, multi-object spectrograph that will equip the prime focus of the WHT 4.2m telescope. The instrument is currently in the construction phase and several components have already been procured. I will give a short overview of the instrument and of the project and its status. The French participation is done through CNRS - Institut National des Sciences de l'Univers and the technical activity is carried out, at this stage, at GEPI, Observatoire de Paris