52 research outputs found

    Immunohistochemical study of morphology and distribution of CD163+ve macrophages in the normal adult equine gastrointestinal tract

    Get PDF
    Intestinal macrophages are the largest group of mononuclear phagocytes in the body and play a role in intestinal innate immunity, neuroimmune interactions and maintaining intestinal homeostasis. Conversely, they also are implicated in numerous pathologies of the gastrointestinal tract, such as postoperative ileus and inflammatory bowel disease. As a result, macrophages could be potential therapeutic targets. To date, there are limited studies on the morphology and distribution of macrophages in the equine gastrointestinal tract (GIT). The aim of this study was to identify the location and abundance of resident macrophages in the equine GIT using CD163 as an immunohistochemical marker. Tissue samples were obtained post-mortem from 14 sites along the gastrointestinal tracts of 10 horses free from gastrointestinal disease; sample sites extended from the stomach to the small colon. CD163 cells were present in all regions of the equine GIT from stomach to small colon. CD163 cells were also identified in all tissue layers of the intestinal wall, namely, mucosa, submucosa, muscularis externa (ME), myenteric plexus and serosa. Consistent with a proposed function in regulation of intestinal motility, CD163 cells were regularly distributed within the ME, with accumulations closely associated with the myenteric plexus and effector cells such as neurons and the interstitial cells of Cajal (ICC)

    ZAK is required for doxorubicin, a novel ribotoxic stressor, to induce SAPK activation and apoptosis in HaCaT cells

    Get PDF
    Doxorubicin is an anthracycline drug that is one of the most effective and widely used anticancer agents for the treatment of both hematologic and solid tumors. The stress-activated protein kinases (SAPKs) are frequently activated by a number of cancer chemotherapeutics. When phosphorylated, the SAPKs initiate a cascade that leads to the production of proinflammatory cytokines. Some inhibitors of protein synthesis, known as ribotoxic stressors, coordinately activate SAPKs and lead to apoptotic cell death. We demonstrate that doxorubicin effectively inhibits protein synthesis, activates SAPKs, and causes apoptosis. Ribotoxic stressors share a common mechanism in that they require ZAK, an upstream MAP3K, to activate the pro-apoptotic and proinflammatory signaling pathways that lie downstream of SAPKs. By employing siRNA mediated knockdown of ZAK or administration of sorafenib and nilotinib, kinase inhibitors that have a high affinity for ZAK, we provide evidence that ZAK is required for doxorubicin-induced proinflammatory and apoptotic responses in HaCaT cells, a pseudo-normal keratinocyte cell line, but not in HeLa cells, a cancerous cell line. ZAK has two different isoforms, ZAK-α (91 kDa) and ZAK-β (51 kDa). HaCaT or HeLa cells treated with doxorubicin and immunoblotted for ZAK displayed a progressive decrease in the ZAK-α band and the appearance of ZAK-β bands of larger size. Abrogation of these changes after exposure of cells to sorafenib and nilotinib suggests that these alterations occur following stimulation of ZAK. We suggest that ZAK inhibitors such as sorafenib or nilotinib may be effective when combined with doxorubicin to treat cancer patients

    Cell-Autonomous Sex Differences in Gene Expression in Chicken Bone Marrow-Derived Macrophages

    Get PDF
    We have identified differences in gene expression in macrophages grown from the bone marrow of male and female chickens in recombinant chicken M-CSF (CSF1). Cells were profiled with or without treatment with bacterial LPS for 24 h. Approximately 600 transcripts were induced by prolonged LPS stimulation to an equal extent in the male and female macrophages. Many transcripts encoded on the Z chromosome were expressed ∼1.6-fold higher in males, reflecting a lack of dosage compensation in the homogametic sex. A smaller set of W chromosome-specific genes was expressed only in females. LPS signaling in mammals is associated with induction of type 1 IFN-responsive genes. Unexpectedly, because IFNs are encoded on the Z chromosome of chickens, unstimulated macrophages from the female birds expressed a set of known IFN-inducible genes at much higher levels than male cells under the same conditions. To confirm that these differences were not the consequence of the actions of gonadal hormones, we induced gonadal sex reversal to alter the hormonal environment of the developing chick and analyzed macrophages cultured from male, female, and female sex-reversed embryos. Gonadal sex reversal did not alter the sexually dimorphic expression of either sex-linked or IFN-responsive genes. We suggest that female birds compensate for the reduced dose of inducible IFN with a higher basal set point of IFN-responsive genes

    Pleiotropic effects of extended blockade of CSF1R signaling in adult mice.

    Get PDF
    We investigated the role of CSF1R signaling in adult mice using prolonged treatment with anti-CSF1R antibody. Mutation of the CSF1 gene in the op/op mouse produces numerous developmental abnormalities. Mutation of the CSF1R has an even more penetrant phenotype, including perinatal lethality, because of the existence of a second ligand, IL-34. These effects on development provide limited insight into functions of CSF1R signaling in adult homeostasis. The carcass weight and weight of several organs (spleen, kidney, and liver) were reduced in the treated mice, but overall body weight gain was increased. Despite the complete loss of Kupffer cells, there was no effect on liver gene expression. The treatment ablated OCL, increased bone density and trabecular volume, and prevented the decline in bone mass seen in female mice with age. The op/op mouse has a deficiency in pancreatic β cells and in Paneth cells in the gut wall. Only the latter was reproduced by the antibody treatment and was associated with increased goblet cell number but no change in villus architecture. Male op/op mice are infertile as a result of testosterone insufficiency. Anti-CSF1R treatment ablated interstitial macrophages in the testis, but there was no sustained effect on testosterone or LH. The results indicate an ongoing requirement for CSF1R signaling in macrophage and OCL homeostasis but indicate that most effects of CSF1 and CSF1R mutations are due to effects on development

    Macrophage colony stimulating factor increases hepatic macrophage content, liver growth and lipid accumulation in neonatal rats.

    Get PDF
    Signaling via the colony-stimulating factor 1 receptor (CSF1R) controls the survival, differentiation, and proliferation of macrophages. Mutations in CSF1 or CSF1R in mice and rats have pleiotropic effects on postnatal somatic growth. We tested the possible application of pig CSF1-Fc fusion protein as a therapy for low birth weight (LBW) at term, using a model based on maternal dexamethasone treatment in rats. Neonatal CSF1-Fc treatment did not alter somatic growth and did not increase the blood monocyte count. Instead, there was a substantial increase in the size of liver in both control and LBW rats, and the treatment greatly exacerbated lipid droplet accumulation seen in the dexamethasone LBW model. These effects were reversed upon cessation of treatment. Transcriptional profiling of the livers supported histochemical evidence of a large increase in macrophages with a resident Kupffer cell phenotype and revealed increased expression of many genes implicated in lipid droplet formation. There was no further increase in hepatocyte proliferation over the already high rates in neonatal liver. In conclusion, treatment of neonatal rats with CSF1-Fc caused an increase in liver size and hepatic lipid accumulation, due to Kupffer cell expansion and/or activation rather than hepatocyte proliferation. Increased liver macrophage numbers and expression of endocytic receptors could mitigate defective clearance functions in neonates. NEW & NOTEWORTHY This study is based on extensive studies in mice and pigs of the role of CSF1/CSF1R in macrophage development and postnatal growth. We extended the study to neonatal rats as a possible therapy for low birth weight. Unlike our previous studies in mice and pigs, there was no increase in hepatocyte proliferation and no increase in monocyte numbers. Instead, neonatal rats treated with CSF1 displayed reversible hepatic steatosis and Kupffer cell expansion

    Species-Specific Transcriptional Regulation of Genes Involved in Nitric Oxide Production and Arginine Metabolism in Macrophages

    Get PDF
    Activated mouse macrophages metabolize arginine via NO synthase (NOS2) to produce NO as an antimicrobial effector. Published gene expression datasets provide little support for the activation of this pathway in human macrophages. Generation of NO requires the coordinated regulation of multiple genes. We have generated RNA-sequencing data from bone marrow–derived macrophages from representative rodent (rat), monogastric (pig and horse), and ruminant (sheep, goat, cattle, and water buffalo) species, and analyzed the expression of genes involved in arginine metabolism in response to stimulation with LPS. In rats, as in mice, LPS strongly induced Nos2, the arginine transporter Slc7a2, arginase 1 (Arg1), GTP cyclohydrolase (Gch1), and argininosuccinate synthase (Ass1). None of these responses was conserved across species. Only cattle and water buffalo showed substantial NOS2 induction. The species studied also differed in expression and regulation of arginase (ARG2, rather than ARG1), and amino acid transporters. Variation between species was associated with rapid promoter evolution. Differential induction of NOS2 and ARG2 between the ruminant species was associated with insertions of the Bov-A2 retrotransposon in the promoter region. Bov-A2 was shown to possess LPS-inducible enhancer activity in transfected RAW264.7 macrophages. Consistent with a function in innate immunity, NO production and arginine metabolism vary greatly between species and differences may contribute to pathogen host restriction

    Macrophage colony-stimulating factor (CSF1) controls monocyte production and maturation and the steady-state size of the liver in pigs

    Get PDF
    Macrophage colony-stimulating factor (CSF1) is an essential growth and differentiation factor for cells of the macrophage lineage. To explore the role of CSF1 in steady-state control of monocyte production and differentiation and tissue repair, we previously developed a bioactive protein with a longer half-life in circulation by fusing pig CSF1 with the Fc region of pig IgG1a. CSF1-Fc administration to pigs expanded progenitor pools in the marrow and selectively increased monocyte numbers and their expression of the maturation marker CD163. There was a rapid increase in the size of the liver, and extensive proliferation of hepatocytes associated with increased macrophage infiltration. Despite the large influx of macrophages, there was no evidence of liver injury and no increase in circulating liver enzymes. Microarray expression profiling of livers identified increased expression of macrophage markers, i.e., cytokines such as TNF, IL1, and IL6 known to influence hepatocyte proliferation, alongside cell cycle genes. The analysis also revealed selective enrichment of genes associated with portal, as opposed to centrilobular regions, as seen in hepatic regeneration. Combined with earlier data from the mouse, this study supports the existence of a CSF1-dependent feedback loop, linking macrophages of the liver with bone marrow and blood monocytes, to mediate homeostatic control of the size of the liver. The results also provide evidence of safety and efficacy for possible clinical applications of CSF1-Fc

    Emotional design and human-robot interaction

    Get PDF
    Recent years have shown an increase in the importance of emotions applied to the Design field - Emotional Design. In this sense, the emotional design aims to elicit (e.g., pleasure) or prevent (e.g., displeasure) determined emotions, during human product interaction. That is, the emotional design regulates the emotional interaction between the individual and the product (e.g., robot). Robot design has been a growing area whereby robots are interacting directly with humans in which emotions are essential in the interaction. Therefore, this paper aims, through a non-systematic literature review, to explore the application of emotional design, particularly on Human-Robot Interaction. Robot design features (e.g., appearance, expressing emotions and spatial distance) that affect emotional design are introduced. The chapter ends with a discussion and a conclusion.info:eu-repo/semantics/acceptedVersio
    corecore