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Abstract 

Signaling via the colony stimulating factor 1 receptor (CSF1R) controls the survival, differentiation and 

proliferation of macrophages. Mutations in CSF1, or CSF1R in mice and rats have pleiotropic effects on 

postnatal somatic growth. We tested the possible application of CSF1-Fc as a therapy for low birth weight 

(LBW) at term, using a model based upon maternal dexamethasone treatment in rats. Neonatal CSF1-Fc 

treatment did not alter somatic growth, and did not increase the blood monocyte count. Instead, there was a 

substantial increase in the size of liver in both control and LBW rats, and the treatment greatly exacerbated 

the lipid droplet accumulation seen in the dexamethasone LBW model. These effects were reversed upon 

cessation of treatment. Transcriptional profiling of the livers supported histochemical evidence of a large 

increase in macrophages with a resident Kupffer cell phenotype, and revealed increased expression of many 

genes implicated in lipid droplet formation. There was no further increase in hepatocyte proliferation over the 

already high rates in neonatal liver.  

Conclusion: Treatment of neonatal rats with CSF1-Fc caused an increase in liver size and hepatic lipid 

accumulation, due to Kupffer cell expansion and/or activation rather than hepatocyte proliferation. Increased 

liver macrophage numbers and expression of endocytic receptors could mitigate defective clearance 

functions in neonates.   

 

New and noteworthy 

This study is based upon extensive studies in mice and pigs of the role of CSF1/CSF1R in macrophage 

development and postnatal growth. We extended the study to neonatal rats as a possible therapy for low 

birth weight. Unlike our previous studies in mice and pigs, there was no increase in hepatocyte proliferation, 

and no increase in monocyte numbers. Instead, neonatal rats treated with CSF1 displayed reversible hepatic 

steatosis and Kupffer cell expansion.         
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Introduction 

Signals initiated following binding of macrophage colony-stimulating factor (CSF1) or interleukin 34 to a 

shared receptor (CSF1R) control the survival, differentiation and proliferation of cells of the mononuclear 

phagocyte lineage (6, 21, 24). Mutation of CSF1 in rats or mice produces a global deficiency of macrophage 

numbers in most tissues, whereas interleukin 34 appears to be required more specifically for macrophages 

of the brain (microglia) and skin (Langerhans cells) (55). Mutation of the receptor, CSF1R, which ablates the 

response to both ligands, has a more penetrant phenotype in mice (8) and rats (CP, DAH et al. Ms under 

review). The requirement for continuous CSF1R signalling is retained in adult mice, in that treatment with an 

anti-CSF1R antibody depletes tissue macrophages from the majority of organs (26). However, the availability 

of CSF1R ligands in vivo is not saturating. Administration of recombinant human CSF1 to mice expanded the 

circulating blood monocyte and tissue macrophage populations (22). These studies subsequently led to 

confirmation of biological efficacy in human patients (Reviewed in (21)). The circulating CSF1 concentration 

is controlled by CSF1R-mediated endocytic clearance by macrophages of the liver and spleen (3), providing 

a homeostatic loop in which tissue macrophages control monocyte production from the bone marrow (BM) 

(24). Accordingly, anti-CSF1R treatment or mutation of the receptor increases circulating CSF1 concentration 

(8, 26). Macrophages throughout the body occupy defined niches or territories (17) and the local availability 

of CSF1 in tissues may be one determinant of the size/boundary of those territories and local self-renewal of 

macrophages (24).  

Mutation of CSF1 or CSF1R in mice or rats produces a severe postnatal growth retardation due, at least in 

part, to diminished production of the somatic growth factor, insulin like growth factor 1 (IGF1). Hence, 

CSF1/CSF1R could be considered part of the growth hormone/IGF1 axis (15). Consistent with that 

hypothesis, treatment of newborn mice with recombinant CSF1 produced an increase in somatic growth rate 

30 days after birth, associated with increased Igf1 expression (1). To increase the circulating half-life, and 

potentially efficacy of CSF1, we produced a pig CSF1-Fc fusion protein (14). Pig CSF1 is equally active in 

humans and mice (13), and the pig provides a pre-clinical model in which to evaluate therapeutic potential 

(9).  

CSF1-Fc treatment of adult mice produced a rapid increase in the size of the liver associated with extensive 

hepatocyte proliferation (14). The Csf1r gene is expressed solely in cells of the macrophage lineage, and the 

transcriptional regulation has been studied in detail (39). A Csf1r-EGFP marker provides a marker for Kupffer 
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cells in the liver (44) and treatment of mice with a neutralising anti-CSF1R antibody completely depletes the 

transgene-positive Kupffer cell population (26). By contrast, hepatic parenchymal cells in vivo, or in vitro, do 

not possess any detectable CSF1 binding activity (3). Hence, the effects of CSF1-Fc on the liver must be 

mediated indirectly through interactions between macrophages and other liver cells. Subsequent studies 

confirmed that the liver controls circulating CSF1 concentration in humans and CSF1-Fc treatment can 

promote liver regeneration in mouse models (50). CSF1-Fc treatment also promoted liver growth when 

administered to pigs (46). Based on these findings, CSF1 was proposed to be a significant component of the 

so-called hepatostat (46), which controls the homeostatic size of the liver (30). Treatment of newborn piglets 

with CSF1-Fc did not produce the increase in body weight gain that had previously been observed in mice 

(46). Pigs are a precocial species, and commercial animals have been genetically selected for very rapid 

growth rate. We, therefore decided to investigate the impacts of CSF1-Fc in rats.  

Our initial experiments suggested that CSF1-Fc treatment did not increase postnatal growth in rats, but we 

did not determine whether this was because the CSF1 was inactive, or because it was already saturating. 

We considered the possibility that CSF1-Fc might be more efficient in animals with LBW. To this end, we 

utilized a well-studied model of maternal stress in which pregnant rats are injected with glucocorticoids in the 

3rd week of pregnancy (10, 11). This treatment produces lifelong impacts on several organ systems, notably 

predisposing to lipid accumulation in the liver (20, 53). Here we show that pig CSF1-Fc is active in neonatal 

rats, and produces a significant expansion of mononuclear phagocytes in the liver and spleen, associated 

with hepatosplenomegaly. However, the treatment also caused an unexpected, large, but reversible increase 

in fat deposition in the liver.  
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Experimental Procedures 

Rats 

The experiments were carried out under the authority of a UK Home Office Project Licence under the 

regulations of the Animals (Scientific Procedures) Act 1986, approved by The Roslin Institute and The 

University of Edinburgh Animal Welfare and Ethical Review Body. Rats were housed in Techniplast GM1500 

Green Line individually ventilated cages lined with Eco pure aspen chip (2HK) and fed T.2914.12 irradiated 

14% protein (Envigo, UK). Enrichment was provided with aspen chew sticks and sizzle pet (LBS 

Biotechnology, UK). Sprague Dawley rats were injected subcutaneously with 0.15mg/kg dexamethasone 

(Dexadreson) or PBS on days 14-21 of pregnancy. At parturition, pups were given to foster dams and injected 

subcutaneously with either 1 µg/g porcine CSF1-Fc (14) or PBS for 5 days. Injections occurred during the 

light cycle. Pups were weighed daily and blood was collected by cardiac puncture following sacrifice at day 

6. A separate cohort was treated as above and culled on Day 32 (recovery experiment). 

Bone marrow macrophage viability assay 

Bone marrow (BM) was isolated from adult male Sprague Dawley rats. Cells were plated at 3 × 105cells/well 

of a 96-well plate in complete medium either without growth factors, with 104U/ml (100ng/ml) recombinant 

human CSF1 or various concentrations of porcine CSF1-Fc (pCSF1-Fc) and incubated at 37°C, 5% CO2 for 

7 days for macrophage differentiation. MTT was added directly to growth medium at a final concentration of 

0.5mg/ml and the plate was incubated at 37°C for 3h. Solubilisation of tetrazolium salt was achieved with a 

solution of 10% SDS/50% isopropanol/0.01 M HCl at 37°C overnight. The plates were read at 570nm.  

Histology and Immunohistochemistry 

Spleen and livers were weighed then fixed in 10% buffered formalin and processed into paraffin by the 

Histopathology department at the Royal (Dick) School of Veterinary Studies using standard procedures. 

Slides were stained with Haematoxylin and Eosin (H&E). Immunohistochemistry (IHC) was performed with 

mouse anti-rat CD68 (Clone ED1, 1:500, Bio-Rad). For Oil Red O staining, formalin fixed livers were placed 

in 18% sucrose at 4°C overnight and cryosections prepared as described in (45). Staining was performed as 

described in (29). Sections were imaged using a Nanozoomer digital scanner and viewed using NDP.view 2 
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(Hamamatsu, Japan). Oil Red O staining was imaged with standard light microscopy using ZEN software 

(Zeiss). 

Image Analysis 

Image analysis was performed in ImageJ using 6 images per organ. CD68 staining was quantified in spleen 

and liver based on the threshold (1-150). The size and abundance of lipid particles in the liver were quantified 

using haematoxylin and eosin (H&E) stained sections by particle analysis (5µm- infinity and 0.45-1 circularity). 

Blood analysis  

All tests were performed by the Clinical Pathology department at the Royal (Dick) School of Veterinary 

Studies. Blood was collected into 0.5 ml EDTA tubes (Teklab). Total WBC, RBC, monocytes, lymphocytes 

and neutrophils were measured on the ABX Pentra 60 haematology analyser (Hariba Medical). EDTA-plasma 

was used for a Total Bile Acids detection kit (Diazyme) and measured on an ILab 650 Biochemistry Analyser. 

Statistical analysis  

Data were analysed using a Mann–Whitney test. Results are presented as box and whisker plots (the 

horizontal line within the box indicates the median, boundaries of the box indicate the 25th and 75th percentile, 

and the whiskers indicate the highest and lowest values of the results).Weights (days 0-6) were analysed 

using repeated measures two-way ANOVA. All analyses were performed using GraphPad Prism 5.0 

(GraphPad Software Inc.,). A P value < 0.05 was considered statistically significant.    

Microarray 

RNA was extracted from rat liver using Trizol® (ThermoFisher Scientific) followed by purification using the 

Rneasy mini kit (Qiagen) according to the manufacturer’s protocols. RNA integrity and quality were assessed 

using the RNA ScreenTape Kit on the Agilent 2200 TapeStation. Samples with a RNA integrity number 

greater than seven were used for microarray. Microarray was performed by Edinburgh Genomics (Edinburgh, 

UK) using Affymetrix Rat Gene 2.1 ST Array plates and Expression Console™ 1.4.1.46 was used for quality 

control following amplification. 

The signal intensity of microarray results were summarized to probe sets and normalized using robust multi-

array average (RMA) in R using the Affymetrix Transcription Analysis Console. The RMA normalized data 

was loaded into the network analysis tool Miru (Kajeka, UK) for further analysis alongside that of BM derived 
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macrophage (BMDM) data generated from Dark Agouti rats (unpublished). A Pearson correlation matrix of a 

gene-to-gene profile comparison was used to filter for expression correlation relationships of ≥ 0.96 across 

the microarray samples. Nodes within the network graph represent transcripts and the edges between them 

represent expression correlations above the set threshold. To identify groups of tightly co-expressed genes, 

the graph was clustered using the graph-based clustering algorithm MCL set at an inflation value (which 

determines the granularity of the clusters) of 1.8. Gene lists associated with the clusters were exported for 

GO annotation analysis (Biological and Metabolic Processes Level-FAT) using DAVID (Database for 

Annotation, Visualization and Integrated Discovery). GEO accession No. GSE104584. CIBERSORT analysis 

(http://cibersort.stanford.edu/, (32)) was performed using the LM22 expression matrix, which contains 

expression signatures for 22 human haematopoietic cell types/states, and default settings. The macrophage-

lineage expression profiles in the LM22 matrix are derived from freshly isolated monocytes from peripheral 

blood mononuclear cells, unpolarized macrophages (M0, generated by differentiation of monocytes in human 

serum for 7 days), classically activated macrophages (M1, generated by differentiation of monocytes in CSF1 

for 7 days followed by stimulation with LPS and IFNγ for 18 h) and alternatively activated macrophages (M2, 

generated by generated by differentiation of monocytes in CSF1 for 7 days followed by stimulation with IL-4 

for 18 h) (32). Deconvolution of liver samples was associated with global p-values of 0.0 (for CSF1-Fc-treated 

samples) and 0.07-0.09 (for PBS-treated samples), indicating strong goodness of fit for the deconvolution. 

  

http://cibersort.stanford.edu/
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Results 

Pig CSF1-Fc is active on rat macrophages but does not affect post-natal growth 

Prenatal dexamethasone (DEX) treatment of rats produces 8.5-25% lower birth weight in different studies (7, 

33) when compared to vehicle injected rats. To establish the model, Sprague Dawley rats were injected on 

days 14-21 of pregnancy with either DEX or PBS. Injection of PBS was sufficient to reduce the average birth 

weight. DEX treatment lowered birth rate further, producing a 36% reduction relative to non-injected controls 

(Figure 1a). The activity of pig CSF1-Fc on rat BM was comparable to the human recombinant protein (Figure 

1b). Newborn pups were injected with either PBS or 1mg/kg pCSF1-Fc subcutaneously from birth to postnatal 

day 5, weighed daily, and analysed on day 6. The smaller pups from PBS and dexamethasone-treated 

mothers showed a somewhat greater weight gain, apparently recovering their initial weight disadvantage. 

However, pCSF1-Fc treatment did not increase or decrease, weight gain in any of the treatment groups 

(Figure 1c).  

Impact of CSF1-Fc treatment on circulating haematopoietic cells in neonatal rats 

In mice and humans, there is a post-natal surge in serum CSF1 (40, 41). We considered the possibility that 

CSF1 levels in all rat pups may already be saturating, and/or that CSF1-Fc was not active in neonatal rats. 

Treatment of adult mice or weaner pigs with pCSF1-Fc greatly increased the number of circulating monocytes 

(14, 46), but we have not previously examined this in neonates. The blood monocyte numbers were 

marginally affected by the treatment (Figure 2). Changes in total blood leukocytes, lymphocytes and 

neutrophils were also marginal (Figure 2). However, CSF1-Fc was clearly active. In initial studies of infusion 

of CSF1 in human patients, the dose-limiting toxicity was thrombocytopenia (23), and we also observed 

reduced platelet numbers in mice and pigs treated with CSF1-Fc. In the CSF1-Fc-treated neonatal rats, there 

was a 70% reduced platelet count and a 20-30% reduction in red blood cells in all groups (Figure 2).   

CSF1-Fc causes hepatosplenomegaly in neonatal rats 

Treatment of adult mice with CSF1-Fc caused hepatosplenomegaly, associated with the proliferation of 

hepatocytes in the liver (14). Although the size of major organs did not differ between normal and LBW rats, 

CSF1-Fc caused a >30% increase in the relative size of the liver in each treated group (Figure 3). In adult 

mice, there is very little hepatocyte proliferation at steady state, and CSF1-Fc treatment caused a massive 

increase in staining with Ki67 or proliferating cell nuclear antigen (14). In weaner pigs, the baseline 

proliferation of hepatocytes was higher, but an increase in response to CSF1-Fc was still evident. In rat pups, 
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there was extensive staining for proliferating cell nuclear antigen, even in untreated animals, and no additional 

effect of CSF1-Fc was detected (not shown).   

CSF1-Fc treatment increases lipid accumulation in neonatal rats 

Examination of liver histology revealed the likely reason for the increased size of the liver in response to 

CSF1-Fc treatment, as a large accumulation of lipid droplets was evident in each group (Figure 4a). 

Consistent with published data (42), lipid accumulation was evident in untreated pups from DEX-treated 

mothers. The abundance and apparent size of these droplets were further exacerbated by CSF1-Fc treatment 

(Figure 4a-c). The impact of CSF1-Fc treatment was confirmed by Oil-Red O staining (Figure 4d). Lipid 

accumulation in the liver is commonly accompanied by accumulation of bile acids, which have themselves 

been attributed roles in fetal liver haematopoiesis (49). In all of the treated groups, there was a 2-3 fold 

increase in the circulating bile acids in response to CSF1-Fc treatment (Figure 4e). 

CSF1-Fc increases hepatic and splenic macrophage numbers 

In the light of the relative lack of impact of CSF1-Fc on blood monocyte counts, we investigated whether the 

treatment increased tissue macrophage numbers in the liver and spleen. As shown in Figure 5, there was a 

3-4 fold increase in CD68+ positive cells in the liver and a smaller increase, from a higher basal level, in the 

spleen. Low birth weight following maternal dexamethasone treatment did not affect macrophage numbers 

in either organ, or the response to CSF1-Fc.  

CSF1-Fc-regulated gene expression in neonatal rat liver 

In adult mice and weaner pigs, the mechanism(s) underlying the impact of CSF1-Fc treatment on liver growth 

was dissected by array profiling intact liver in parallel with BMDM (14, 46). Analysis of the data as a network 

graph, using Biolayout Express3D (now Miru), enabled the identification of clusters of genes that were induced 

by CSF1, including those that are shared with BMDM and those induced specifically in the liver. The latter 

set would include genes that are expressed uniquely by the macrophages of the liver (28). We generated 

mRNA expression array profiles for rat BMDM and for the livers from control (PBS), and CSF1-Fc treated 

control rats (born to PBS treated dams). The complete primary dataset is provided in Table S1, with average 

expression of each transcript and fold-change between PBS and CSF1-Fc treated rat livers. The set of around 

650 transcripts increased at least 2-fold in the liver by CSF1-Fc treatment (Table S1) is consistent with the 

3-4 fold increase in macrophage content shown in Figure 5. It includes markers such as Adgre1 (F4/80), 

Fcgr1a (Cd64) and Cd14 and multiple transcription factor genes (Fli1, Nr1h3, Tfec, Elf4, Irf8, Spi1, SpiC, 
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Runx1, Runx3, Klf4, Etv1, Etv5, Irf5, Fos), implicated in regulated expression of Csf1r and/or macrophage 

differentiation (39). None of these transcription factors was enriched in the liver relative to BMDM. Id3, which 

was implicated in Kupffer cell differentiation in mice (28) was constitutively expressed in neonatal rat liver 

and not elevated further by CSF1-Fc suggesting it is not specifically associated with the macrophage 

population. To gain insight into the broad impact of CSF1-Fc treatment on liver macrophages, and other 

haematopoietic cell populations, we used CIBERSORT, a tool for characterizing cellular composition of 

complex tissues from gene expression profiles (32). Livers from control mice were predicted to contain a 

higher proportion of monocyte-like cells compare to treated mice, which may reflect liver macrophage 

immaturity in neonatal rats (Figure 6a). CSF1-Fc treatment led to a significant reduction in the monocyte 

expression signature, with a concomitant increase in mature macrophage (M0) and alternatively activated 

macrophage (M2) signatures (Figure 6a). No significant changes in other liver haematopoietic cell 

populations were observed, confirming the specific impact of CSF1-Fc on the macrophage lineage. 

Gene set enrichment analysis (GSEA) (Figures 6b-d) revealed relative enrichment of cell cyle and 

inflammation-related terms in the CSF1-Fc treated livers, and of lipid and xenobiotic metabolism in control 

livers. A network graph created with Miru generated similar liver- and macrophage-associated clusters to 

conventional hierarchical clustering (Figures 7a-b). The average profiles of the 4 largest clusters and 

representative transcripts are shown. The complete transcript list for each of these clusters is provided in 

Table S2. The implications of the set of inducible genes and each of the clusters and their relationship to the 

macrophage recruitment and accumulation of lipids are discussed below. 

 

CSF1-Fc-induced macrophage expansion, hepatosplenomegaly and lipid accumulation is reversible 

Having observed the impact of CSF1-Fc treatment on the growth of the liver and fat deposition, we asked if 

the effect was reversible upon cessation of treatment. Control and treated animals were allowed to recover 

for an additional 27 days following treatment. As shown in Figure 8, at this time there was no longer any 

difference between the groups in terms of relative liver and spleen size, the content of CD68+ cells in the 

spleen was normalized and fat deposition in the liver was no longer evident.  
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DISCUSSION 

Concentrations of CSF1 were found to be higher in fetal than in maternal blood throughout mouse gestation 

and to peak around the time of birth, at which time there was also a peak of CSF1 protein in the liver (41). In 

humans, CSF1 is also elevated in the embryonic circulation relative to the maternal, and there was a two-

threefold increase in the first few days after a full term birth (40). In the current study, we have examined the 

possible roles of that increase in available CSF1 by administering an exogenous source for the first 5 days 

of life in rats.  

The FANTOM5 consortium produced detailed time courses of the mRNA expression profile of developing 

mouse organs based upon Cap Analysis of Gene Expression. Analysis of these data revealed a signature of 

increased macrophage content with time of development (51). The macrophages of the mouse liver display 

a unique gene expression profile including endocytic receptors (Clec4f and Timd4). Their expression in the 

liver escalated rapidly between neonatal day 0 and day 7, consistent with a role for the postnatal surge in the 

liver and circulating CSF1 in the expansion of this population. Correlation-based network analysis of gene 

expression profiles of CSF1-Fc-treated and control livers from neonatal rats, alongside BMDM, revealed 4 

clear clusters of liver- and macrophage- associated genes. Cluster 3 (Figure 7b Table S2) contains transcripts 

that were relatively low or absent in BMDM, higher in liver from control mice, and elevated 4-5 fold further in 

response to CSF1-Fc. The cluster includes Clec4f, Marco, Vsig4 and Timd4 identified in mice as definitive 

markers of resident Kupffer cells, compared to monocytes and monocyte-derived macrophages (47, 54). The 

cluster also contains Kupffer cell-associated transcripts, Cd163, ferroportin (Slc40a1) the haem transporter, 

Slc48a1, and haem oxygenase (Hmox1), involved in the elimination of senescent red cells and recycling of 

haem iron (31). Two other macrophage-related clusters were identified in the data. Cluster 4 (Figure 7b) was 

expressed highly in BMDM, and strongly-inducible in the liver in response to CSF1-Fc. The cluster includes 

Cd68 (consistent with Figure 5), Adgre1 (F4/80), Csf1r and Mpeg1. Cluster 1 (Figure 7b) contains 

macrophage-related genes (e.g. Gpnmb) that were strongly expressed in BMDM and induced to a lesser 

extent by CSF1-Fc treatment. Cluster 2 contains transcripts that were not detected in BMDM, and were 

reduced in CSF1-Fc-treated livers. The reduction in their expression is not simply due to dilution by the 

macrophage-associated transcripts. Hepatocyte-specific genes such as Alb and Afp were unaffected (Table 

S1).     
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In adult mice, CSF1-Fc treatment promoted the proliferation of both resident Kupffer cells and infiltrating 

monocytes (50). Monocyte recruitment depends upon Ccl2 signalling via Ccr2, but, unlike in mice, neither 

gene was induced by CSF1-Fc in rats. Monocyte markers such as Spn (Cd43) (19) and Ly6C were readily 

detected in the liver, but were not increased further by CSF1-Fc (Table S1). CIBERSORT analysis identified 

a reduced monocyte expression signature in CSF1-Fc-treated livers (Figure 6a). Taken together with the 

large increase in expression of liver macrophage-specific genes such as Timd4 and Vsig4, and the lack of a 

substantial increase in circulating monocyte numbers (Figure 2), these findings suggest that most of the 

increase in liver macrophages arises from proliferation of resident Kupffer cells. Some of the regulated genes 

in Table S1, such as Cd163, Cd206, and Msr1 (Cd204) have been regarded as markers of “M2”-macrophage 

polarization in rats (52) (12), and the inducible gene profile also includes members of the Tgfb family (Tgfb1, 

Tgfb3), which are M2-associated cytokines (57). However, Cd163 is known to be expressed constitutively by 

Kupffer cells and many resident macrophages in rats (37). These genes are all expressed constitutively in 

the naïve liver, and they are not increased to any greater extent than the Kupffer cell markers or generic 

macrophage-associated transcripts such as Cd14, Cd68, Adgre1 and Csf1r. By contrast, IL4 target genes 

such as Tgm2, Arg1 and Retnla (27) were not increased in the treated liver, suggesting the “M2” expression 

signature detected in CSF1-Fc treated liver by CIBERSORT deconvolution analysis relates to the Kupffer cell 

profile mentioned above rather than IL4-mediated alternative activation. Accordingly, CSF1-Fc treatment 

appears to act solely to promote expansion and maturation of the resident macrophage population of the 

neonatal liver, reflected by increased mature macrophage expression signatures (M0, M2).  

CSF1-Fc treatment did not increase hepatocyte proliferation in neonatal rats. Hence, the increase in liver 

size was mainly due to the extensive lipid droplet formation. Genes such as Pcna, the transcription factor 

FoxM1 and cyclins (e.g. Ccna2), were expressed constitutively in both rat BMDM, which are actively 

proliferating, and in the liver, regardless of CSF1-Fc treatment (Table S1). Nevertheless, the GSEA in Figure 

6 indicates enrichment for cell-cycle-associated genes in response to CSF1-Fc, which is likely to be 

associated with proliferation of the macrophages (50). In adult mice, the proliferation of hepatocytes is 

dependent in part upon inflammatory cytokines such as IL6 and TNF produced by incoming Ccr2-dependent 

monocytes in response to exposure to portal blood (14, 50). The increased expression of classical LPS-

responsive pro-inflammatory genes was detectable in expression profiles of liver from CSF1-Fc treated mice 

and pigs (14, 50). By contrast, no induction of mRNA encoding these inflammatory cytokines was seen in the 
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CSF1-Fc treated neonatal rat livers. We suggest that the lack of inflammatory cytokine induction in neonatal 

liver reflects the absence of monocyte recruitment.   

CSF1-Fc treatment alone was sufficient to promote lipid droplet accumulation, and the comparative gene 

expression profiles in Table S1 may give clues as to the underlying mechanism. The biogenesis of lipid 

droplets has been reviewed by Pol et al. (36). Most genes involved (e.g. Acscl1,3 and 4, Aup1, Dgat2, Spg20, 

Cct1, Pemt, Perilipins (Plin2, Plin3) and Bscl2 (aka seipin)) were expressed in neonatal rat liver, but were not 

increased further by CSF1-Fc (Table S1). One possible site of regulation is the uptake of fatty acids. However, 

the two most highly-expressed hepatocyte fatty acid transporters, encoded by Slc27a2 and Slc27a5, were 

each somewhat down-regulated in CSF1-Fc treated livers, as were the major fatty acid binding proteins, 

Fabp1, Fabp5 and Fabp 7. The fatty acid translocase, Cd36, was elevated 4-5 fold in the CSF1-Fc treated 

livers. Cd36 is highly expressed in macrophages, however it is also implicated in fatty acid uptake in 

hepatocytes in rats (5) and mice (56); suggesting some of this induction may occur in hepatocytes. 

Hepatocyte-specific conditional deletion of Cd36 in mice was shown recently to greatly attenuate lipid 

accumulation in two models of hepatic steatosis (56). The active cholesterol transporter, Abcg1 (34), less 

well-studied cholesterol-sensitive transporter, Abca9 (35), phospholipid transfer protein (Pltp) (2) and the 

insulin-converting enzyme, Pcsk1, linked to regulated lipid droplet accumulation in adipocytes (43), were also 

up-regulated in response to CSF1. Downstream of lipid uptake, Acyl-CoA synthesis is an essential event in 

lipid droplet formation, in which the Acsl family are implicated (36). The long and short chain acyl-coA 

synthetases, Acsbg1, Acsf2 and Acss1, and the remodeling enzyme Lpcat2 (18) were each strongly 

increased by CSF1-Fc treatment. Ceramide kinase (Cerk), an upstream regulator of PLA2 activation and lipid 

droplet formation (16) was also increased >2-fold by CSF1-Fc. The set of genes down-regulated by CSF1-

Fc (Cluster 2) may also contribute to lipid droplet formation through alterations in lipid metabolism. For 

example, Cyp27a1 controls the generation of the cholesterol derivative, 27-hydroxycholesterol, and knockout 

of the gene is associated with hyper-triglyceridemia (38). Cluster 2 includes the master regulator, Fgf21, 

which is highly-expressed in neonatal liver, and reduced nearly 4-fold by CSF1-Fc. Fgf21 has been implicated 

in control of numerous lipid/obesity-related liver pathologies (25). The bile acid receptors, Nr1h4 (Fxr) and 

Gpbar1 (Tgr5), are also within this cluster, and might be subject to feedback regulation by elevated bile acids. 

Many of the genes in Cluster 2, notably the cytochrome P450 enzymes such as Cyp27a1 and Cyp2e1, have 

a centrilobular enrichment in adult mouse liver (4).   
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In adult mice, treatment with CSF1-Fc mimicked many effects of insulin, producing a marked down-regulation 

of genes encoding enzymes of gluconeogenesis, fatty acid oxidation and amino acid catabolism (14). This 

was not evident in the treated neonatal rats, where CSF1-Fc treatment did not regulate known targets of 

insulin repression, including the insulin receptor itself (Insr), the transcription factor FoxO1 and downstream 

targets such as the signal transducer Irs2, gluconeogenic enzymes Pck1 and G6pase tyrosine amino 

transferase (Tat), Igfbp1 and ApoC2 (58), indicating that insulin signaling is unaltered. We suggest that the 

difference between the effects of adult and neonatal CSF1-Fc treatments lies in the recruitment of monocytes 

and inflammatory cytokine production.  

In overview, the transcriptional profiling of neonatal rat livers treated with CSF1-Fc highlights many genes 

that may control lipid droplet formation. Lipid droplet accumulation was not observed in adult mice, or pigs, 

in response to CSF1-Fc administration (14, 46, 50). In adult animals, CSF1-Fc caused a profound 

monocytosis and the expanded hepatic macrophage population was predominantly recruited monocytes. The 

response to CSF1-Fc in the neonates suggests that lipid accumulation is controlled at least in part by resident 

Kupffer cells. In that case, treatment with anti-CSF1R, which rapidly depletes Kupffer cells (26), could have 

some benefit in reversing lipid accumulation. The focus on lipid droplet formation, which we have shown is 

rapidly reversible, potentially neglects the potential benefit of such a treatment. In the context of models of 

acute liver failure, CSF1-Fc treatment rapidly expanded the Kupffer cell population and restored the capacity 

for removal of potential infections arriving in the portal blood (50). Neonatal sepsis is one of the main causes 

of morbidity and mortality, attributed in part to the immaturity of the neonatal immune system (48). We have 

shown that CSF1-Fc treatment of neonatal rats can produce a rapid increase in Kupffer cell numbers, 

independently of monocyte recruitment, and regardless of prior maternal stress and LBW. The inducible 

genes in Table S1 and S2 include numerous pattern recognition and endocytic receptors (e.g. Siglec1, 

Siglec5, Nlrp3, Nlrc4, Mrc1, Tlr1,2,4,6,7, Cd163, Clec4a, Msr1, Marco, Timd4, Axl, Vsig4, Fcgr2a), and the 

components of the phagocyte oxidase system (Cyba, Cybb, Ncf2, Ncf1 and 4). Accordingly, we suggest that 

CSF1-Fc treatment has potential to promote rapid maturation of innate immunity in neonates at high risk of 

infection.  
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Figure Legends 

Figure 1 – CSF1-Fc does not promote weight gain in neonatal rats. 

(a) Rats were injected with PBS or Dexamethasone (DEX) on days 14-21 of pregnancy. Control dams were 

not injected. Box and whisker plots of birth weight. n=37-65. Results were analysed with a Mann-Whitney 

test. **** p < 0.0001. (b) Bone marrow from male rats was cultured in 100ng/ml recombinant human CSF1 

(rhCSF1), porcine CSF1-Fc or without growth factor (cells only) for 7 days. MTT was used to assess cell 

viability. n=2 repeat experiments. Graphs show mean +SEM. (c) Offspring were injected with PBS or 1µg/g 

CSF1 on days 0 to 5 and weighed daily. Box and whisker plots of weight at day 6. n=7-19. Results were 

analysed by repeat measures two-way ANOVA (days 0-6).  

 

Figure 2 – Effect of CSF1-Fc treatment on the blood of neonatal rats. 

Rats were injected with PBS or Dexamethasone (DEX) on days 14-21 of pregnancy. Control dams were not 

injected. Offspring were treated with PBS or 1µg/g porcine CSF1-Fc on days 0 to 5. EDTA-blood was 

obtained from rats at day 6. n= 4-5 (control), 8 (PBS) and 11-15 (DEX). Results were analysed with a Mann 

Whitney test. P values are indicated on the box and whisker plots. 

 

Figure 3 – Effect of CSF1-Fc treatment on organ weights of neonatal rats. 

Rats were injected with PBS or Dexamethasone (DEX) on days 14-21 of pregnancy. Control dams were not 

injected. Offspring were treated with PBS or 1µg/g porcine CSF1-Fc on days 0 to 5. Organs were weighed 

at day 6. n= 7 (control), 8 (PBS) and 15-17 (DEX). Results were analysed with a Mann Whitney test. P values 

are indicated on the box and whisker plots. 

 

Figure 4 – CSF1-Fc treatment causes lipid accumulation in livers of neonatal rats. 

Rats were injected with PBS or Dexamethasone (DEX) on days 14-21 of pregnancy. Control dams were not 

injected. Offspring were treated with PBS or 1µg/g porcine CSF1-Fc on days 0 to 5.(a) Representative H&E 

sections of formalin-fixed paraffin embedded livers. ImageJ was used to quantify (b) the percentage area of 

lipids and (c) lipid size using 6 H&E images per liver. n= 7 (control), 11-12 (PBS) and 7 (DEX). (d) 

Representative Oil red O staining of frozen liver sections. (e) EDTA-plasma was tested for bile acids. n= 7-8 
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for all groups. All results were analysed with a Mann Whitney test. P values are indicated on the box and 

whisker plots. 

 

Figure 5 – Treatment of neonatal rats with CSF1-Fc causes an increase in liver and splenic 

macrophages. 

Rats were injected with PBS or Dexamethasone (DEX) on days 14-21 of pregnancy. Control dams were not 

injected. Offspring were treated with PBS or 1µg/g porcine CSF1-Fc on days 0 to 5. Organs were collected 

at day 6. Representative images of formalin-fixed, paraffin-embedded livers (a) and spleens (b) stained with 

an antibody against CD68. Sections shown are from neonatal rats born to PBS-injected dams. The 

percentage area of CD68+ staining was calculated with ImageJ using 6 images per organ. n= 6-8 for all 

groups. All results were analysed with a Mann Whitney test. P values are indicated on the box and whisker 

plots. 

 

Figure 6 – Gene Set Enrichment Analysis of neonatal rat livers. 

Rats were injected with PBS on days 14-21 of pregnancy and offspring were treated with PBS or 1µg/g 

porcine CSF1-Fc on days 0 to 5. Livers were collected at day 6 for RNA isolation and subsequent microarray 

analysis. (a) Relative proportion of haematopoietic cell types in PBS- and CSF1-Fc-treated livers predicted 

using CIBERSORT. (b) Significantly enriched hallmark gene sets were determined by Gene Set Enrichment 

Analysis (FDR q-value <0.05). Example gene set enrichment plots for (c) CSF1-Fc and (d) PBS-treated 

neonatal rat livers. Expression data was ranked according to normalized expression in CSF1-Fc vs. PBS-

treated liver (indicated by red-blue bars) and the gene set of interest was mapped onto this profile (black 

bars) to determine enrichment scores (green lines). 

 

Figure 7 – CSF1-Fc –regulated gene expression in neonatal rat liver. 

Rats were injected with PBS on days 14-21 of pregnancy and offspring were treated with PBS or 1µg/g 

porcine CSF1-Fc on days 0 to 5. Livers were collected at day 6 for RNA isolation and subsequent microarray 

analysis. (a) Normalized data were clustered with gene expression data from bone marrow derived 

macrophages (BMDM) by Spearman correlation using Miru. (b) Graphs show the average expression of 

clusters in BMDM, CSF1-Fc and PBS treated neonatal rats born to PBS-injected dams. 
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Figure 8 – Cessation of CSF1-Fc treatment reverts organ size, lipid accumulation and macrophage 

numbers to control levels. 

Rats were injected with Dexamethasone on days 14-21 of pregnancy and offspring were treated with PBS or 

1µg/g porcine CSF1-Fc on days 0 to 5. (a) Organs were collected and weighed 27 days following the last 

injection (b) Representative H&E sections of formalin-fixed, paraffin-embedded livers. (c) Box and whisker 

plots showing the percentage area of CD68+ staining as calculated by ImageJ using 6 images per organ. n= 

5 for all groups. (d) Representative CD68 immunohistochemistry of formalin-fixed, paraffin-embedded 

spleens. 

 


