6,937 research outputs found

    A Reverse Monte Carlo study of H+D Lyman alpha absorption from QSO spectra

    Get PDF
    A new method based on a Reverse Monte Carlo [RMC] technique and aimed at the inverse problem in the analysis of interstellar (intergalactic) absorption lines is presented. The line formation process in chaotic media with a finite correlation length (l>0)(l > 0) of the stochastic velocity field (mesoturbulence) is considered. This generalizes the standard assumption of completely uncorrelated bulk motions (l≡0)(l \equiv 0) in the microturbulent approximation which is used for the data analysis up-to-now. It is shown that the RMC method allows to estimate from an observed spectrum the proper physical parameters of the absorbing gas and simultaneously an appropriate structure of the velocity field parallel to the line-of-sight. The application to the analysis of the H+D Lyα\alpha profile is demonstrated using Burles & Tytler [B&T] data for QSO 1009+2956 where the DI Lyα\alpha line is seen at za=2.504z_a = 2.504. The results obtained favor a low D/H ratio in this absorption system, although our upper limit for the hydrogen isotopic ratio of about 4.5×10−54.5\times10^{-5} is slightly higher than that of B&T (D/H = 3.0−0.5+0.6×10−53.0^{+0.6}_{-0.5} \times 10^{-5}). We also show that the D/H and N(HI) values are, in general, correlated, i.e. the derived D-abundance may be badly dependent on the assumed hydrogen column density. The corresponding confidence regions for an arbitrary and a fixed stochastic velocity field distribution are calculated.Comment: 6 pages, LaTeX, 2 Postscript figures, to appear in "The Primordial Nuclei and Their Galactic Evolution", eds. N. Prantzos, M. Tosi, R. von Steiger (Kluwer: Dordrecht

    On the cosmological domain wall problem for the minimally extended supersymmetric standard model

    Get PDF
    We study the cosmology of the Supersymmetric Standard Model augmented by a gauge singlet to solve the μ-problem and describe the evolution of the domain walls which are created during electroweak symmetry breaking due to the discrete symmetry in this model. The usual assumption that (gravitationally induced) non-renormalisable terms which explicitly break this symmetry may cause the walls to collapse on a cosmologically safe timescale, is reconsidered. Such terms are constrained by considerations of primordial nucleosynthesis, and also because (by not respecting the symmetry) they induce divergences which destabilise the hierarchy and reintroduce the μ-problem. We find that, even when the Kähler potential is ‘non-minimal’ (i.e. when the hidden sector couples directly to the visible), the model is either ruled out cosmologically or suffers from a naturalness problem

    A Real-time Model for Multiple Human Face Tracking from Low-resolution Surveillance Videos

    Get PDF
    AbstractThis article discusses a novel approach of multiple-face tracking from low-resolution surveillance videos. There has been significant research in the field of face detection using neural-network based training. Neural network based face detection methods are highly accurate, albeit computationally intensive. Hence neural network based approaches are not suitable for real-time applications. The proposed approach approximately detects faces in an image solely using the color information. It detects skin region in an image and finds existence of eye and mouth region in the skin region. If it finds so, it marks the skin region as a face and fits an oriented rectangle to the face. The approach requires low computation and hence can be applied on subsequent frames from a video. The proposed approach is tested on FERET face database images, on different images containing multiple faces captured in unconstrained environments, and on frames extracted from IP surveillance camera

    Small bowel obstruction complicating colonoscopy: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>This report describes a rare complication of colonoscopy and reviews the literature with regard to other rare causes of acute abdominal presentations following colonoscopy.</p> <p>Case presentation</p> <p>After a therapeutic colonoscopy a 60-year-old woman developed an acute abdomen. At laparotomy she was discovered to have small bowel obstruction secondary to incarceration through a congenital band adhesion.</p> <p>Conclusion</p> <p>Although there is no practical way in which such rare complications can be predicted, this case report emphasises the wide array of pathologies that can result in acute abdominal symptoms following colonoscopy.</p

    Molecular characterization of a multidrug resistance IncF plasmid from the globally disseminated Escherichia coli ST131 clone.

    Get PDF
    Escherichia coli sequence type 131 (E. coli ST131) is a recently emerged and globally disseminated multidrug resistant clone associated with urinary tract and bloodstream infections. Plasmids represent a major vehicle for the carriage of antibiotic resistance genes in E. coli ST131. In this study, we determined the complete sequence and performed a comprehensive annotation of pEC958, an IncF plasmid from the E. coli ST131 reference strain EC958. Plasmid pEC958 is 135.6 kb in size, harbours two replicons (RepFIA and RepFII) and contains 12 antibiotic resistance genes (including the blaCTX-M-15 gene). We also carried out hyper-saturated transposon mutagenesis and multiplexed transposon directed insertion-site sequencing (TraDIS) to investigate the biology of pEC958. TraDIS data showed that while only the RepFII replicon was required for pEC958 replication, the RepFIA replicon contains genes essential for its partitioning. Thus, our data provides direct evidence that the RepFIA and RepFII replicons in pEC958 cooperate to ensure their stable inheritance. The gene encoding the antitoxin component (ccdA) of the post-segregational killing system CcdAB was also protected from mutagenesis, demonstrating this system is active. Sequence comparison with a global collection of ST131 strains suggest that IncF represents the most common type of plasmid in this clone, and underscores the need to understand its evolution and contribution to the spread of antibiotic resistance genes in E. coli ST131

    Comprehensive analysis of type 1 fimbriae regulation in fimB -null strains from the multidrug resistant Escherichia coli ST131 clone

    Get PDF
    Summary\ud \ud Uropathogenic Escherichia coli (UPEC) of sequence type 131 (ST131) are a pandemic multidrug resistant clone associated with urinary tract and bloodstream infections. Type 1 fimbriae, a major UPEC virulence factor, are essential for ST131 bladder colonization. The globally dominant sub-lineage of ST131 strains, clade C/H30-R, possess an ISEc55 insertion in the fimB gene that controls phase-variable type 1 fimbriae expression via the invertible fimS promoter. We report that inactivation of fimB in these strains causes altered regulation of type 1 fimbriae expression. Using a novel read-mapping approach based on Illumina sequencing, we demonstrate that ‘off’ to ‘on’ fimS inversion is reduced in these strains and controlled by recombinases encoded by the fimE and fimX genes. Unlike typical UPEC strains, the nucleoid-associated H-NS protein does not strongly repress fimE transcription in clade C ST131 strains. Using a genetic screen to identify novel regulators of fimE and fimX in the clade C ST131 strain EC958, we defined a new role for the guaB gene in the regulation of type 1 fimbriae and in colonisation of the mouse bladder. Our results provide a comprehensive analysis of type 1 fimbriae regulation in ST131, and highlight important differences in its control compared to non-ST131 UPEC

    Lineage-Specific Methyltransferases Define the Methylome of the Globally Disseminated Escherichia coli ST131 Clone.

    Get PDF
    UNLABELLED: Escherichia coli sequence type 131 (ST131) is a clone of uropathogenic E. coli that has emerged rapidly and disseminated globally in both clinical and community settings. Members of the ST131 lineage from across the globe have been comprehensively characterized in terms of antibiotic resistance, virulence potential, and pathogenicity, but to date nothing is known about the methylome of these important human pathogens. Here we used single-molecule real-time (SMRT) PacBio sequencing to determine the methylome of E. coli EC958, the most-well-characterized completely sequenced ST131 strain. Our analysis of 52,081 methylated adenines in the genome of EC958 discovered three (m6)A methylation motifs that have not been described previously. Subsequent SMRT sequencing of isogenic knockout mutants identified the two type I methyltransferases (MTases) and one type IIG MTase responsible for (m6)A methylation of novel recognition sites. Although both type I sites were rare, the type IIG sites accounted for more than 12% of all methylated adenines in EC958. Analysis of the distribution of MTase genes across 95 ST131 genomes revealed their prevalence is highly conserved within the ST131 lineage, with most variation due to the presence or absence of mobile genetic elements on which individual MTase genes are located. IMPORTANCE: DNA modification plays a crucial role in bacterial regulation. Despite several examples demonstrating the role of methyltransferase (MTase) enzymes in bacterial virulence, investigation of this phenomenon on a whole-genome scale has remained elusive until now. Here we used single-molecule real-time (SMRT) sequencing to determine the first complete methylome of a strain from the multidrug-resistant E. coli sequence type 131 (ST131) lineage. By interrogating the methylome computationally and with further SMRT sequencing of isogenic mutants representing previously uncharacterized MTase genes, we defined the target sequences of three novel ST131-specific MTases and determined the genomic distribution of all MTase target sequences. Using a large collection of 95 previously sequenced ST131 genomes, we identified mobile genetic elements as a major factor driving diversity in DNA methylation patterns. Overall, our analysis highlights the potential for DNA methylation to dramatically influence gene regulation at the transcriptional level within a well-defined E. coli clone

    Increased therapeutic potential of an experimental anti-mitotic inhibitor SB715992 by genistein in PC-3 human prostate cancer cell line

    Get PDF
    BACKGROUND: Kinesin spindle proteins (KSP) are motor proteins that play an essential role in mitotic spindle formation. HsEg5, a KSP, is responsible for the formation of the bipolar spindle, which is critical for proper cell division during mitosis. The function of HsEg5 provides a novel target for the manipulation of the cell cycle and the induction of apoptosis. SB715992, an experimental KSP inhibitor, has been shown to perturb bipolar spindle formation, thus making it an excellent candidate for anti-cancer agent. Our major objective was a) to investigate the cell growth inhibitory effects of SB715992 on PC-3 human prostate cancer cell line, b) to investigate whether the growth inhibitory effects of SB715992 could be enhanced when combined with genistein, a naturally occurring isoflavone and, c) to determine gene expression profile to establish molecular mechanism of action of SB715992. METHODS: PC-3 cells were treated with varying concentration of SB715992, 30 μM of genistein, and SB715992 plus 30 μM of genistein. After treatments, PC-3 cells were assayed for cell proliferation, induction of apoptosis, and alteration in gene and protein expression using cell inhibition assay, apoptosis assay, microarray analysis, real-time RT-PCR, and Western Blot analysis. RESULTS: SB715992 inhibited cell proliferation and induced apoptosis in PC-3 cells. SB715992 was found to regulate the expression of genes related to the control of cell proliferation, cell cycle, cell signaling pathways, and apoptosis. In addition, our results showed that combination treatment with SB715992 and genistein caused significantly greater cell growth inhibition and induction of apoptosis compared to the effects of either agent alone. CONCLUSION: Our results clearly show that SB715992 is a potent anti-tumor agent whose therapeutic effects could be enhanced by genistein. Hence, we believe that SB715992 could be a novel agent for the treatment of prostate cancer with greater success when combined with a non-toxic natural agent like genistein

    GEMSEC: Graph Embedding with Self Clustering

    Get PDF
    Modern graph embedding procedures can efficiently process graphs with millions of nodes. In this paper, we propose GEMSEC -- a graph embedding algorithm which learns a clustering of the nodes simultaneously with computing their embedding. GEMSEC is a general extension of earlier work in the domain of sequence-based graph embedding. GEMSEC places nodes in an abstract feature space where the vertex features minimize the negative log-likelihood of preserving sampled vertex neighborhoods, and it incorporates known social network properties through a machine learning regularization. We present two new social network datasets and show that by simultaneously considering the embedding and clustering problems with respect to social properties, GEMSEC extracts high-quality clusters competitive with or superior to other community detection algorithms. In experiments, the method is found to be computationally efficient and robust to the choice of hyperparameters
    • …
    corecore