90 research outputs found

    Natural disturbance reduces disease risk in endangered rainforest frog populations

    Get PDF
    Natural disturbances can drive disease dynamics in animal populations by altering the microclimates experienced by hosts and their pathogens. Many pathogens are highly sensitive to temperature and moisture, and therefore small changes in habitat structure can alter the microclimate in ways that increase or decrease infection prevalence and intensity in host populations. Here we show that a reduction of rainforest canopy cover caused by a severe tropical cyclone decreased the risk of endangered rainforest frogs (Litoria rheocola) becoming infected by a fungal pathogen (Batrachochytrium dendrobatidis). Reductions in canopy cover increased the temperatures and rates of evaporative water loss in frog microhabitats, which reduced B. dendrobatidis infection risk in frogs by an average of 11–28% in cyclone-damaged areas, relative to una ected areas. Natural disturbances to the rainforest canopy can therefore provide an immediate bene t to frogs by altering the microclimate in ways that reduce infection risk. This could increase host survival and reduce the probability of epidemic disease outbreaks. For amphibian populations under immediate threat from this pathogen, targeted manipulation of canopy cover could increase the availability of warmer, drier microclimates and therefore tip the balance from host extinction to coexistence

    Dynamics of the dispersion interaction in an energy transfer system

    Get PDF
    On the propagation of resonant radiation through an optically dense system, photon capture is commonly followed by one or more near-field transfers of the resulting optical excitation. The process invokes secondary changes to the local electronic environment, shifting the electromagnetic interactions between participant chromophores and producing modified intermolecular forces. From the theory it emerges that energy transfer, when it occurs between chromophores with electronically dissimilar properties, can itself generate significant changes in the intermolecular potentials. This report highlights specific effects that can be anticipated when laser light propagates across an interface between differentially absorbing components in a model energy transfer system

    Apparent Thixotropic Properties of Saline/Glycerol Drops with Biotinylated Antibodies on Streptavidin-Coated Glass Slides: Implications for Bacterial Capture on Antibody Microarrays

    Get PDF
    The thixotropic-like properties of saline/glycerol drops, containing biotinylated capture antibodies, on streptavidin-coated glass slides have been investigated, along with their implications for bacterial detection in a fluorescent microarray immunoassay. The thixotropic-like nature of 60:40 saline-glycerol semisolid droplets (with differing amounts of antibodies) was observed when bacteria were captured, and their presence detected using a fluorescently-labeled antibody. Semisolid, gel-like drops of biotinylated capture antibody became liquefied and moved, and then returned to semisolid state, during the normal immunoassay procedures for bacterial capture and detection. Streaking patterns were observed that indicated thixotropic-like characteristics, and this appeared to have allowed excess biotinylated capture antibody to participate in bacterial capture and detection. When developing a microarray for bacterial detection, this must be considered for optimization. For example, with the appropriate concentration of antibody (in this study, 0.125 ng/nL), spots with increased diameter at the point of contact printing (and almost no streaking) were produced, resulting in a maximal signal. With capture antibody concentrations greater than 0.125 ng/nL, the excess biotinylated capture antibody (i.e., that which was residing in the three-dimensional, semisolid droplet space above the surface) was utilized to capture more bacteria. Similarly, when the immunoassay was performed within a hydrophobic barrier (i.e., without a coverslip), brighter spots with increased signal were observed. In addition, when higher concentrations of cells (∌108 cells/mL) were available for capture, the importance of unbound capture antibody in the semisolid droplets became apparent because washing off the excess, unbound biotinylated capture antibody before the immunoassay was performed reduced the signal intensity by nearly 50%. This reduction in signal was not observed with lower concentrations of cells (∌106 cells/mL). With increased volumes of capture antibody, abnormal spots were visualized, along with decreased signal intensity, after bacterial detection, indicating that the increased droplet volume detrimentally affected the immunoassay

    Multiplexed Electrochemical Detection of Yersinia Pestis and Staphylococcal Enterotoxin B using an Antibody Microarray

    Get PDF
    The CombiMatrix antibody microarray is a versatile, sensitive detection platform based on the generation and transduction of electrochemical signals following antigen binding to surface antibodies. The sensor chip described herein is comprised of microelectrodes coupled to an adjacent bio-friendly matrix coated with antibodies to the biological pathogens Yersinia pestis and Bacillus anthracis, and the bacterial toxin staphylococcal enterotoxin B (SEB). Using this system, we were able to detect SEB and inactivated Y. pestis individually as well as in two-plex assays at concentrations as low as 5 pg/mL and 106 CFU/mL, respectively. We also introduce super avidin-biotin system (SABS) as a viable and effective means to enhance assay signal responses and lower detection limits. Together these technologies represent substantial advances in point-of-care and point-of-use detection applications

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Smith, Ricardo and the world marketplace

    No full text

    Prebisch-singer hypothesis

    No full text

    Hans W Singer

    No full text

    Strike Activity in the U.K.

    No full text
    • 

    corecore