147 research outputs found

    Pemilihan Pembiayaan KPR (Kredit Pemilikan Rumah) Dengan Akad Murabahah (Studi Kasus Di Bank Muamalat Tbk Cabang Pembantu Samarinda Seberang)

    Get PDF
    Having your own home is the dream of all people, even being the basic human needs that must be met. But most people cannot afford to buy with cash to buy in installments or credit and the bank Muamalat itself, provided a variety of KPRS that can be selected according to the needs and interest free. Having your own home is no longer a difficult one, because there are the housing loans granted by banks commonly called mortgage (KPR). Bank Muamalat was present meet the demand of people with the name Residential Syariah financing from Bank Muamalat is a financing facility for residential property in accordance with Islamic principles. Thatneeds with of the community in the ownership of the house in installment and in accordance with Islamic principles. The purpose of this study to determine Factors Influencing the Customer in choosing a mortgage with AkadMurabaha Financing. This study concluded that the factors Customers Choose AkadMurabaha Financing mortgages with Religion is a factor, Factor Location Factor, Friends, Ad Factors, Economic Factors, Care Factor

    Antimicrobial Activity of Bee Venom and Melittin against Borrelia burgdorferi

    Get PDF
    Lyme disease is a tick-borne, multi-systemic disease, caused by the bacterium Borrelia burgdorferi. Though antibiotics are used as a primary treatment, relapse often occurs after the discontinuation of antimicrobial agents. The reason for relapse remains unknown, however previous studies suggest the possible presence of antibiotic resistant Borrelia round bodies, persisters and attached biofilm forms. Thus, there is an urgent need to find antimicrobial agents suitable to eliminate all known forms of B. burgdorferi. In this study, natural antimicrobial agents such as Apis mellifera venom and a known component, melittin, were tested using SYBR Green I/PI, direct cell counting, biofilm assays combined with LIVE/DEAD and atomic force microscopy methods. The obtained results were compared to standalone and combinations of antibiotics such as Doxycycline, Cefoperazone, Daptomycin, which were recently found to be effective against Borrelia persisters. Our findings showed that both bee venom and melittin had significant effects on all the tested forms of B. burgdorferi. In contrast, the control antibiotics when used individually or even in combinations had limited effects on the attached biofilm form. These findings strongly suggest that whole bee venom or melittin could be effective antimicrobial agents for B. burgdorferi; however, further research is necessary to evaluate their effectiveness in vivo, as well as their safe and effective delivery method for their therapeutic use

    Effect of RpoN, RpoS and LuxS Pathways on the Biofilm Formation and Antibiotic Sensitivity of Borrelia burgdorferi

    Get PDF
    Borrelia burgdorferi, the causative agent of Lyme disease, is capable of forming biofilm in vivo and in vitro, a structure well known for its resistance to antimicrobial agents. For the formation of biofilm, signaling processes are required to communicate with the surrounding environment such as it was shown for the RpoN—RpoS alternative sigma factor and for the LuxS quorum-sensing pathways. Therefore, in this study, the wild-type B. burgdorferi and different mutant strains lacking RpoN, RpoS, and LuxS genes were studied for their growth characteristic and development of biofilm structures and markers as well as for their antibiotic sensitivity. Our results showed that all three mutants formed small, loosely formed aggregates, which expressed previously identified Borrelia biofilm markers such as alginate, extracellular DNA, and calcium. All three mutants had significantly different sensitivity to doxycyline in the early log phase spirochete cultures; however, in the biofilm rich stationary cultures, only LuxS mutant showed increased sensitivity to doxycyline compared to the wild-type strain. Our findings indicate that all three mutants have some effect on Borrelia biofilm, but the most dramatic effect was found with LuxS mutant, suggesting that the quorum-sensing pathway plays an important role of Borrelia biofilm formation and antibiotic sensitivity

    Improved Culture Conditions for the Growth and Detection of Borrelia from Human Serum

    Get PDF
    In this report we present a method to cultivate Borrelia spirochetes from human serum samples with high efficiency. This method incorporates improved sample collection, optimization of culture media and use of matrix protein. The method was first optimized utilizing Borrelia laboratory strains, and later by demonstrating growth of Borrelia from sera from fifty seropositive Lyme disease patients followed by another cohort of 72 Lyme disease patients, all of whom satisfied the strict CDC surveillance case definition for Lyme disease. The procedure resulted in positive cultures in 47% at 6 days and 94% at week 16. Negative controls included 48 cases. The positive identification of Borrelia was performed by immunostaining, PCR, and direct DNA sequencing

    Influence of Tick and Mammalian Physiological Temperatures on Borrelia Burgdorferi Biofilms

    Get PDF
    The spirochaete bacterium Borrelia burgdorferi sensu lato is the aetiologic agent of Lyme disease. Borrelia is transmitted to mammals through tick bite and is adapted to survive at tick and mammalian physiological temperatures. We have previously shown that B. burgdorferi can exist in different morphological forms, including the antibiotic-resistant biofilm form, in vitro and in vivo. B. burgdorferi forms aggregates in ticks as well as in humans, indicating potential of biofilm formation at both 23 and 37 °C. However, the role of various environmental factors that influence Borrelia biofilm formation remains unknown. In this study, we investigated the effect of tick (23 °C), mammalian physiological (37 °C) and standard in vitro culture (33 °C) temperatures with the objective of elucidating the effect of temperature on Borrelia biofilm phenotypes invitro using two B. burgdorferi sensu stricto strains (B31 and 297). Our findings show increased biofilm quantity, biofilm size, exopolysaccharide content and enhanced adherence as well as reduced free spirochaetes at 37 °C for both strains, when compared to growth at 23 and 33 °C. There were no significant variations in the biofilm nano-topography and the type of extracellular polymeric substance in Borrelia biofilms formed at all three temperatures. Significant variations in extracellular DNA content were observed in the biofilms of both strains cultured at the three temperatures. Our results indicate that temperature is an important regulator of Borrelia biofilm development, and that the mammalian physiological temperature favours increased biofilm formation in vitro compared to tick physiological temperature and in vitro culture temperature

    Palladium nanoparticles in catalytic carbon nanoreactors: the effect of confinement on Suzuki-Miyaura reactions

    Get PDF
    We explore the construction and performance of a range of catalytic nanoreactors based on palladium nanoparticles encapsulated in hollow graphitised nanofibres. The optimum catalytic material, with small palladium nanoparticles located almost exclusively at the graphitic step-edges within nanoreactors, exhibits attractive catalytic properties in Suzuki-Miyaura cross-coupling reactions. Confinement of nanoparticles at the step-edges facilitates retention of catalytic centres and recycling of catalytic nanoreactors without any significant loss of activity or selectivity over multiple catalytic cycles. Furthermore, careful comparison of the catalytic properties of palladium nanoparticles either on or in nanoreactors reveals that nanoscale confinement of catalysts fundamentally affects the pathways of the Suzuki-Miyaura reaction, with the yield and selectivity for the cross-coupled product critically dependent on the steric properties of the aryl iodide reactant, whereas no effects of confinement are observed for aryl boronic acid reactants possessing substituents in different positions. These results indicate that the oxidative addition step of the Suzuki-Miyaura reaction occurs at the step-edge of nanofibres, where the mechanisms and kinetics of chemical reactions are known to be sensitive to nanoscale confinement, and thus the extent of confinement in carbon nanoreactors can be discretely controlled by careful selection of the aryl iodide reactant

    The Effect of Quantum Dot Shell Structure on Fluorescence Quenching By Acridine Ligand

    Get PDF
    The current strategy for the development of advanced methods of tumor treatment focuses on targeted drug delivery to tumor cells. Quantum dot (QD) - semiconductor fluorescent nanocrystal, conjugated with a pharmacological ligand, such as acridine, ensures real-time tracking of the delivery process of the active substance. However, the problem of QD fluorescence quenching caused by charge transfer can arise in the case when acridine is bound to the QD. We found that QD shell structure has a defining role on photoinduced electron transfer from QD on acridine ligand which leads to quenching of QD photoluminescence. We have found that multishell CdSe/ZnS/CdS/ZnS QD structure provides minimal reduction of photoluminescence quantum yield at minimal shell thickness compared to classical thin ZnS or “giant” shells. Thus, CdSe/ZnS/CdS/ZnS core/multishell QD could be an optimal choice for engineering of small-sized acridine-based fluorescent labels for tumor diagnosis and treatment systems. Keywords: Quantum dot, photoluminescence quenching, DNA ligand, acridine derivative

    4-Arylbenzenesulfonamides as Human Carbonic Anhydrase Inhibitors (hCAIs): Synthesis by Pd Nanocatalyst-Mediated Suzuki–Miyaura Reaction, Enzyme Inhibition, and X-ray Crystallographic Studies

    Get PDF
    Benzenesulfonamides bearing various substituted (hetero)aryl rings in the para-position were prepared by palladium nanoparticle-catalyzed Suzuki–Miyaura cross-coupling reactions and evaluated as human carbonic anhydrase (hCA, EC 4.2.1.1) inhibitors against isoforms hCA I, II, IX, and XII. Most of the prepared sulfonamides showed low inhibition against hCA I isoform, whereas the other cytosolic isoenzyme, hCA II, was strongly affected. The major part of these new derivatives acted as potent inhibitors of the tumor-associated isoform hCA XII. An opposite trend was observed for phenyl, naphthyl, and various heteroaryl substituted benzenesulfonamides which displayed subnanomolar hCA IX inhibition while poorly inhibiting the other tumor-associated isoform hCA XII. The inhibition potency and influence of the partially restricted aryl–aryl bond rotation on the activity/selectivity were rationalized by means of X-ray crystallography of the adducts of hCA II with several 4-arylbenzenesulfonamides

    Evidence of in Vivo Existence of Borrelia Biofilm in Borrelial Lymphocytomas

    Get PDF
    Lyme borreliosis, caused by the spirochete Borrelia burgdorferi sensu lato, has grown into a major public health problem. We recently identified a novel morphological form of B. burgdorferi, called biofilm, a structure that is well known to be highly resistant to antibiotics. However, there is no evidence of the existence of Borrelia biofilm in vivo; therefore, the main goal of this study was to determine the presence of Borrelia biofilm in infected human skin tissues. Archived skin biopsy tissues from borrelial lymphocytomas (BL) were reexamined for the presence of B. burgdorferi sensu lato using Borrelia-specific immunohistochemical staining (IHC), fluorescent in situ hybridization, combined fluorescent in situ hybridization (FISH)—IHC, polymerase chain reaction (PCR), and fluorescent and atomic force microscopy methods. Our morphological and histological analyses showed that significant amounts of Borrelia-positive spirochetes and aggregates exist in the BL tissues. Analyzing structures positive for Borrelia showed that aggregates, but not spirochetes, expressed biofilm markers such as protective layers of different mucopolysaccharides, especially alginate. Atomic force microscopy revealed additional hallmark biofilm features of the Borrelia/alginate-positive aggregates such as inside channels and surface protrusions. In summary, this is the first study that demonstrates the presence of Borrelia biofilm in human infected skin tissues
    • 

    corecore