234 research outputs found

    Multiple lipid binding sites determine the affinity of PH domains for phosphoinositide-containing membranes

    Get PDF
    Association of peripheral proteins with lipid bilayers regulates membrane signaling and dynamics. Pleckstrin homology (PH) domains bind to phosphatidylinositol phosphate (PIP) molecules in membranes. The effects of local PIP enrichment on the interaction of PH domains with membranes is unclear. Molecular dynamics simulations allow estimation of the binding energy of GRP1 PH domain to PIP3-containing membranes. The free energy of interaction of the PH domain with more than two PIP3 molecules is comparable to experimental values, suggesting that PH domain binding involves local clustering of PIP molecules within membranes. We describe a mechanism of PH binding proceeding via an encounter state to two bound states which differ in the orientation of the protein relative to the membrane, these orientations depending on the local PIP concentration. These results suggest that nanoscale clustering of PIP molecules can control the strength and orientation of PH domain interaction in a concentration-dependent manner

    Distinctive phosphoinositide- and Ca²⁺-binding properties of normal and cognitive performance–linked variant forms of KIBRA C2 domain

    Get PDF
    Kidney- and brain-expressed protein (KIBRA), a multifunctional scaffold protein with around 20 known binding partners, is involved in memory and cognition, organ size control via the Hippo pathway, cell polarity, and membrane trafficking. KIBRA includes tandem N-terminal WW domains, a C2 domain, and motifs for binding atypical PKC and PDZ domains. A naturally occurring human KIBRA variant involving residue changes at positions 734 (Met-to-Ile) and 735 (Ser-to-Ala) within the C2 domain affects cognitive performance. We have elucidated 3D structures and calcium- and phosphoinositide-binding properties of human KIBRA C2 domain. Both WT and variant C2 adopt a canonical type I topology C2 domain fold. Neither Ca²⁺ nor any other metal ion was bound to WT or variant KIBRA C2 in crystal structures, and Ca²⁺ titration produced no significant reproducible changes in NMR spectra. NMR and X-ray diffraction data indicate that KIBRA C2 binds phosphoinositides via an atypical site involving β-strands 5, 2, 1, and 8. Molecular dynamics simulations indicate that KIBRA C2 interacts with membranes via primary and secondary sites on the same domain face as the experimentally identified phosphoinositide-binding site. Our results indicate that KIBRA C2 domain association with membranes is calcium-independent and involves distinctive C2 domain–membrane relative orientations.

    Interactions of the EphA2 Kinase Domain with PIPs in Membranes: Implications for Receptor Function

    Get PDF
    EphA2 is a member of the receptor tyrosine kinase family. Interactions of the cytoplasmic region of EphA2 with the cell membrane are functionally important and yet remain incompletely characterized. Molecular dynamics simulations combined with biochemical studies reveal the interactions of the transmembrane, juxtamembrane (JM), and kinase domains with the membrane. We describe how the kinase domain is oriented relative to the membrane and how the JM region can modulate this interaction. We highlight the role of phosphatidylinositol phosphates (PIPs) in mediating the interaction of the kinase domain with the membrane and, conversely, how positively charged patches at the kinase surface and in the JM region induce the formation of nanoclusters of PIP molecules in the membrane. Integration of these results with those from previous studies enable computational reconstitution of a near complete EphA2 receptor within a membrane, suggesting a role for receptor-lipid interactions in modulation of EphA2

    Structure, mechanism, and inhibition of Hedgehog acyltransferase

    Get PDF
    The Sonic Hedgehog (SHH) morphogen pathway is fundamental for embryonic development and stem cell maintenance and is implicated in various cancers. A key step in signaling is transfer of a palmitate group to the SHH N terminus, catalyzed by the multi-pass transmembrane enzyme Hedgehog acyltransferase (HHAT). We present the high-resolution cryo-EM structure of HHAT bound to substrate analog palmityl-coenzyme A and a SHH-mimetic megabody, revealing a heme group bound to HHAT that is essential for HHAT function. A structure of HHAT bound to potent small-molecule inhibitor IMP-1575 revealed conformational changes in the active site that occlude substrate binding. Our multidisciplinary analysis provides a detailed view of the mechanism by which HHAT adapts the membrane environment to transfer an acyl chain across the endoplasmic reticulum membrane. This structure of a membrane-bound O-acyltransferase (MBOAT) superfamily member provides a blueprint for other protein-substrate MBOATs and a template for future drug discovery

    Allosteric activation of T cell antigen receptor signaling by quaternary structure relaxation

    Get PDF
    The mechanism of T cell antigen receptor (TCR-CD3) signaling remains elusive. Here, we identify mutations in the transmembrane region of TCRβ or CD3ζ that augment peptide T cell antigen receptor (pMHC)-induced signaling not explicable by enhanced ligand binding, lateral diffusion, clustering, or co-receptor function. Using a biochemical assay and molecular dynamics simulation, we demonstrate that the gain-of-function mutations loosen the interaction between TCRαβ and CD3ζ. Similar to the activating mutations, pMHC binding reduces TCRαβ cohesion with CD3ζ. This event occurs prior to CD3ζ phosphorylation and at 0°C. Moreover, we demonstrate that soluble monovalent pMHC alone induces signaling and reduces TCRαβ cohesion with CD3ζ in membrane-bound or solubilised TCR-CD3. Our data provide compelling evidence that pMHC binding suffices to activate allosteric changes propagating from TCRαβ to the CD3 subunits, reconfiguring interchain transmembrane region interactions. These dynamic modifications could change the arrangement of TCR-CD3 boundary lipids to license CD3ζ phosphorylation and initiate signal propagation

    Switching Cytolytic Nanopores into Antimicrobial Fractal Ruptures by a Single Side Chain Mutation

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Chemical Society via the DOI in this recordDisruption of cell membranes is a fundamental host defense response found in virtually all forms of life. The molecular mechanisms vary but generally lead to energetically favored circular nanopores. Here, we report an elaborate fractal rupture pattern induced by a single side-chain mutation in ultrashort (8–11-mers) helical peptides, which otherwise form transmembrane pores. In contrast to known mechanisms, this mode of membrane disruption is restricted to the upper leaflet of the bilayer where it exhibits propagating fronts of peptide-lipid interfaces that are strikingly similar to viscous instabilities in fluid flow. The two distinct disruption modes, pores and fractal patterns, are both strongly antimicrobial, but only the fractal rupture is nonhemolytic. The results offer wide implications for elucidating differential membrane targeting phenomena defined at the nanoscale.UK Department for Business, Energy and Industrial StrategyWellcome TrustEuropean Research Council (ERC)Cambridge-NPL case studentshipWinton Programme for the Physics of SustainabilityTrinity-Henry Barlow ScholarshipMedical Research Council (MRC)Royal SocietyEngineering and Physical Sciences Research Council (EPSRC

    Study on Phylogenetic Relationships, Variability, and Correlated Mutations in M2 Proteins of Influenza Virus A

    Get PDF
    M2 channel, an influenza virus transmembrane protein, serves as an important target for antiviral drug design. There are still discordances concerning the role of some residues involved in proton transfer as well as the mechanism of inhibition by commercial drugs. The viral M2 proteins show high conservativity; about 3/4 of the positions are occupied by one residue in over 95%. Nine M2 proteins from the H3N2 strain and possibly two proteins from H2N2 strains make a phylogenic cluster closely related to 2RLF. The variability range is limited to 4 residues/position with one exception. The 2RLF protein stands out by the presence of 2 serines at the positions 19 and 50, which are in most other M2 proteins occupied by cysteines. The study of correlated mutations shows that there are several positions with significant mutational correlation that have not been described so far as functionally important. That there are 5 more residues potentially involved in the M2 mechanism of action. The original software used in this work (Consensus Constructor, SSSSg, Corm, Talana) is freely accessible as stand-alone offline applications upon request to the authors. The other software used in this work is freely available online for noncommercial purposes at public services on bioinformatics such as ExPASy or NCBI. The study on mutational variability, evolutionary relationship, and correlated mutation presented in this paper is a potential way to explain more completely the role of significant factors in proton channel action and to clarify the inhibition mechanism by specific drugs

    Free backbone carbonyls mediate rhodopsin activation

    Get PDF
    Conserved prolines in the transmembrane helices of G-protein-coupled receptors (GPCRs) are often considered to function as hinges that divide the helix into two segments capable of independent motion. Depending on their potential to hydrogen-bond, the free C=O groups associated with these prolines can facilitate conformational flexibility, conformational switching or stabilization of the receptor structure. To address the role of conserved prolines in family A GPCRs through solid-state NMR spectroscopy, we focus on bovine rhodopsin, a GPCR in the visual receptor subfamily. The free backbone C=O groups on helices H5 and H7 stabilize the inactive rhodopsin structure through hydrogen-bonds to residues on adjacent helices. In response to light-induced isomerization of the retinal chromophore, hydrogen-bonding interactions involving these C=O groups are released, thus facilitating repacking of H5 and H7 onto the transmembrane core of the receptor. These results provide insights into the multiple structural and functional roles of prolines in membrane proteins

    On the simple random-walk models of ion-channel gate dynamics reflecting long-term memory

    Get PDF
    Several approaches to ion-channel gating modelling have been proposed. Although many models describe the dwell-time distributions correctly, they are incapable of predicting and explaining the long-term correlations between the lengths of adjacent openings and closings of a channel. In this paper we propose two simple random-walk models of the gating dynamics of voltage and Ca2+-activated potassium channels which qualitatively reproduce the dwell-time distributions, and describe the experimentally observed long-term memory quite well. Biological interpretation of both models is presented. In particular, the origin of the correlations is associated with fluctuations of channel mass density. The long-term memory effect, as measured by Hurst R/S analysis of experimental single-channel patch-clamp recordings, is close to the behaviour predicted by our models. The flexibility of the models enables their use as templates for other types of ion channel
    corecore