

Library

The University of Bradford Institutional Repository

http://bradscholars.brad.ac.uk

This work is made available online in accordance with publisher policies. Please refer to the repository record for this item and our Policy Document available from the repository home page for further information.

To see the final version of this work please visit the publisher's website. Access to the published online version may require a subscription.

Link to publisher's version: http://dx.doi.org/10.1016/j.bpj.2013.11.888

Citation: Murali K, Bollepalli MK, Fowler PW et al (2014) Structural and Thermodynamic Characterization of the Gating Pathway in a K⁺ Channel. Biophysical Journal. 106(2) Supplement 1: 155A.

Copyright statement: © 2014 Elsevier. Reproduced in accordance with the publisher's selfarchiving policy. This manuscript version is made available under the *CC-BY-NC-ND 4.0 license*.

786-Pos Board B541

Structural and Thermodynamic Characterization of the Gating Pathway in a K^{D} Channel

Murali K. Bollepalli¹, Philip W. Fowler², Markus Rapedius¹, Lijun Shang³, Mark S.P. Sansom², Stephen J. Tucker³, Thomas Baukrowitz¹.

¹Institute of Physiology, University of Kiel, Germany, ²Departement of Biochemistry, University of Oxford, United Kingdom, ³Clarendon Laboratory, Department of Physics, University of Oxford, United Kingdom.

Structures of inwardly-rectifying (Kir) potassium channels are now available in many different crystallographic states. We now analyse these structures in the context of functional data for mutations at over 180 positions within the Kir1.1 (ROMK) channel. This reveals an extensive network of physically interacting residues which stabilise the preopen and open-states of the channel, but which breaks down upon channel closure. This approach not only validates a struc- tural gating pathway for the Kir channel, but also provides insight into the structure of the transition state connecting these crystallographic states. This gating network also appears to be an important structural determinant of the thermodynamic stability of these different gating states as well as influencing the impact of mutations on channel function, and suggest that such statedependent physical connectivity between residues may also be relevant to our understanding of other allosteric proteins.