47 research outputs found

    Анализ условий ΠΈ достиТимого ΠΏΡ€Π΅Π΄Π΅Π»Π° сниТСния ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ Π΄Π²ΡƒΡ…ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ опрСдСлСния твёрдости сталСй

    Get PDF
    All measurements of mechanical properties of materials in the magnetic structural analysis are indirect and relationships between the measured parameters are correlated. An important physical parameter of steel is hardness. An increase in the correlation coefficient R and a reduction in the standard deviation (SD) are achieved when controlling the hardness of steels with two-parameter magnetic methods compared to methods that use a single measured parameter. However, the specific conditions and requirements for application of the two-parameter methods remain unclear. The purpose of this article was to analyze conditions and the achievable error reduction limit for two-parameter indirect determination of steels hardness and to compare those with one-parameter methods. In particular, we considered the mean Square Deviation (SD), ΟƒF , of indirect calculation of the physical quantity F using two measured parameters x1 and x2 that are correlated with F. It was found that reduction of ΟƒF is most pronounced when x1 and x2 are inversely correlated with the maximum modulus |R| of the correlation coefficient R between them. The most significant reduction in ΟƒF occurs at similar values of the SDs Οƒ1 and Οƒ2 between the true value of F and the values calculated based on the results of indirect measurements of F using each of the parameters x1 and x2 . The Results of the analysis are confirmed by an example of reduction in SD when determining the hardness of carbon steels by measuring their remanent magnetization and coercive force compared to use any one of these parameters. This result can be applied to measurements in non-destructive testing and in related fields of physics and technology. The Results of the analysis allow us to compare different parameters for indirect two-parameter determination of a physical quantity, to select the optimal parameters, and to evaluate the minimum achievable measurement error of a physical quantity by a two-parameter method before performing the measurements

    Анализ условий ΠΈ достиТимого ΠΏΡ€Π΅Π΄Π΅Π»Π° сниТСния ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ Π΄Π²ΡƒΡ…ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ опрСдСлСния твёрдости сталСй

    Get PDF
    All measurements of mechanical properties of materials in the magnetic structural analysis are indirect and relationships between the measured parameters are correlated. An important physical parameter of steel is hardness. An increase in the correlation coefficient R and a reduction in the standard deviation (SD) are achieved when controlling the hardness of steels with two-parameter magnetic methods compared to methods that use a single measured parameter. However, the specific conditions and requirements for application of the two-parameter methods remain unclear. The purpose of this article was to analyze conditions and the achievable error reduction limit for two-parameter indirect determination of steels hardness and to compare those with one-parameter methods.In particular, we considered the mean Square Deviation (SD), ΟƒFβ€Š, of indirect calculation of the physical quantity F using two measured parameters x1 and x2 that are correlated with F. It was found that reduction of ΟƒF is most pronounced when x1Β and x2 are inversely correlated with the maximum modulus |R| of the correlation coefficient R between them. The most significant reduction in ΟƒFΒ occurs at similar values of the SDs Οƒ1 and Οƒ2 between the true value of F and the values calculated based on the results of indirect measurements of F usingeach of the parameters x1 and x2β€Š. The Results of the analysis are confirmed by an example of reduction in SD when determining the hardness of carbon steels by measuring their remanent magnetization and coercive force compared to use any one of these parameters.This result can be applied to measurements in non-destructive testing and in related fields of physics and technology. The Results of the analysis allow us to compare different parameters for indirect two-parameter determination of a physical quantity, to select the optimal parameters, and to evaluate the minimum achievable measurement error of a physical quantity by a two-parameter method before performing the measurements.ВсС измСрСния Ρ„ΠΈΠ·ΠΈΠΊΠΎ-мСханичСских свойств ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² Π² ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΌ структурном Π°Π½Π°Π»ΠΈΠ·Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ косвСнными, Π° связи ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ коррСляционный Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€. Π’Π°ΠΆΠ½Ρ‹ΠΌ физичСским ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ стали являСтся Ρ‚Π²Ρ‘Ρ€Π΄ΠΎΡΡ‚ΡŒ. Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΠΈ добились ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ коэффициСнта R коррСляции ΠΈ сниТСния срСднСго ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ отклонСния ΠΏΡ€ΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ твёрдости сталСй Π΄Π²ΡƒΡ…ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²Ρ‹ΠΌ ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΎΠ΄Π½ΠΎΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²Ρ‹ΠΌ. Но ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ условия примСнСния Π΄Π²ΡƒΡ…ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΎΡΡ‚Π°ΡŽΡ‚ΡΡ Π½Π΅ установлСнными. ЦСлью ΡΡ‚Π°Ρ‚ΡŒΠΈ являлся Π°Π½Π°Π»ΠΈΠ· условий ΠΈ достиТимого ΠΏΡ€Π΅Π΄Π΅Π»Π° сниТСния ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ Π΄Π²ΡƒΡ…ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ косвСнного опрСдСлСния твёрдости сталСй ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΎΠ΄Π½ΠΎΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²Ρ‹ΠΌ.ИсслСдовано срСднСС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠ΅ ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΟƒF косвСнного опрСдСлСния физичСской Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ F с использованиСм Π΄Π²ΡƒΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² x1 ΠΈ x2β€Š, коррСляционно связанных с F. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ эффСкт сниТСния ΟƒF сильнСС всСго проявляСтся ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ коррСляционной связи ΠΌΠ΅ΠΆΠ΄Ρƒ x1Β ΠΈ x2 с ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΌ |R| коэффициСнта R коррСляции ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ. НаиболСС сущСствСнноС сниТСниСσFΒ ΠΈΠΌΠ΅Π΅Ρ‚ мСсто ΠΏΡ€ΠΈ Π±Π»ΠΈΠ·ΠΊΠΈΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°Ρ… срСдних ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠΉ Οƒ1Β ΠΈ Οƒ2Β ΠΌΠ΅ΠΆΠ΄Ρƒ истинными значСниями F ΠΈ значСниями, рассчитанными ΠΏΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ косвСнных ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ F с использованиСм ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² x1 ΠΈ x2β€Š. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π°Π½Π°Π»ΠΈΠ·Π° ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Ρ‹ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ сниТСния срСднСго ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ отклонСния опрСдСлСния твёрдости углСродистых сталСй ΠΏΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ измСрСния ΠΈΡ… остаточной намагничСнности ΠΈ коэрцитивной силы ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с использованиСм любого ΠΈΠ· этих ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ².ΠžΠ±Π»Π°ΡΡ‚ΡŒ примСнСния Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π° – измСрСния Π² Π½Π΅Ρ€Π°Π·Ρ€ΡƒΡˆΠ°ΡŽΡ‰Π΅ΠΌ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ ΠΈ смСТных областях Ρ„ΠΈΠ·ΠΈΠΊΠΈ ΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π°Π½Π°Π»ΠΈΠ·Π° позволят Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ для косвСнного Π΄Π²ΡƒΡ…ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ опрСдСлСния твёрдости сталСй, ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ Π΄ΠΎΡΡ‚ΠΈΠΆΠΈΠΌΡƒΡŽ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ опрСдСлСния твёрдости

    One-Bead Microrheology with Rotating Particles

    Full text link
    We lay the theoretical basis for one-bead microrheology with rotating particles, i.e, a method where colloids are used to probe the mechanical properties of viscoelastic media. Based on a two-fluid model, we calculate the compliance and discuss it for two cases. We first assume that the elastic and fluid component exhibit both stick boundary conditions at the particle surface. Then, the compliance fulfills a generalized Stokes law with a complex shear modulus whose validity is only limited by inertial effects, in contrast to translational motion. Secondly, we find that the validity of the Stokes regime is reduced when the elastic network is not coupled to the particleComment: 7 pages, 5 figures, submitted to Europhys. Let

    Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ коэффициСнта коррСляции ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ измСрСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° ΠΈ Π΅Π³ΠΎ истинными значСниями ΠΎΡ‚ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ измСрСния

    Get PDF
    Magnetic testing of steels' mechanical properties is based on their correlation with steels' magnetic parameters. The purpose of this work was to establish dependence of the attainable correlation coefficient Rmax between measurement results and the parameter values a on the reduced error of its measurement. The article proposes a model of the correlation field between the parameter true values and the results of its measurement with a given reduced error Ξ΄. The merits and legitimacy of using the model for estimation of the achievable correlation coefficient Rmax are substantiated. Analysis of influence of Ξ΄ parameter measurement in different ranges d of its change on Rmax is carried out. Results are compared with the previous analysis for the relative measurement error. It has been established in this work that the coefficient Rmax calculated for the reduced measurement error is always smaller than Rmax one calculated for the relative measurement error. However in the practically important range of variation of d with Ξ΄ ≀ 0.05 the difference between the Rmax values calculated for the reduced and relative measurement errors is not large. This allows us to use the developed formula for the dependence Rmax = Rmax (Ξ΄, d) at Rmax β‰₯ 0.8 for both relative and reduced measurement errors Ξ΄. The obtained result allows us using the reduced measurement error of a metrologically certified measuring instrument to obtain the maximum attainable correlation coefficient between the true values and the results of measuring a parameter in a given range of its change without measurements. As an example, we define the conditions for the non-destructive testing of steels under which one can use measuring of magnetic parameters with the installation certified based on the reduced measurement error.ΠœΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΉ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ мСханичСских свойств сталСй основан Π½Π° ΠΈΡ… коррСляционных связях с ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлось установлСниС зависимости достиТимого коэффициСнта коррСляции Rmax ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ измСрСния ΠΈ истинными значСниями ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° ΠΎΡ‚ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ Π΅Π³ΠΎ измСрСния.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° модСль коррСляционного поля ΠΌΠ΅ΠΆΠ΄Ρƒ истинными значСниями ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ Π΅Π³ΠΎ измСрСния с Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒΡŽ Ξ΄. ΠžΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Ρ‹ достоинства ΠΈ ΠΏΡ€Π°Π²ΠΎΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ использования ΠΌΠΎΠ΄Π΅Π»ΠΈ для ΠΎΡ†Π΅Π½ΠΊΠΈ достиТимого коэффициСнта коррСляции Rmax. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· влияния Ξ΄ измСрСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π² Ρ€Π°Π·Π½Ρ‹Ρ… Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°Ρ… d Π΅Π³ΠΎ измСнСния Π½Π° Rmax. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ сопоставлСны с ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΌ Ρ€Π°Π½Π΅Π΅ Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ для ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ измСрСния.УстановлСно, Ρ‡Ρ‚ΠΎ коэффициСнт Rmax, рассчитанный для ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ измСрСния, всСгда мСньшС Rmax, рассчитанного для ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ измСрСния. Но Π² практичСски Π²Π°ΠΆΠ½ΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ измСнСния d ΠΏΡ€ΠΈ Ξ΄ ≀ 0,05 Ρ€Π°Π·Π½ΠΈΡ†Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ Rmax, рассчитанными для ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ ΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚Π΅ΠΉ измСрСния, Π½Π΅ Π²Π΅Π»ΠΈΠΊΠ°. Π­Ρ‚ΠΎ позволяСт ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для зависимости Rmax = Rmax (Ξ΄, d) ΠΏΡ€ΠΈ Rmax β‰₯ 0,8 ΠΊΠ°ΠΊ для ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ, Ρ‚Π°ΠΊ ΠΈ для ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚Π΅ΠΉ измСрСния.ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ позволяСт Π±Π΅Π· ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ, ΠΏΠΎ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ измСрСния мСтрологичСски аттСстованного срСдства измСрСния, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ максимально достиТимый коэффициСнт коррСляции ΠΌΠ΅ΠΆΠ΄Ρƒ истинными значСниями ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ измСрСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π² извСстном Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π΅Π³ΠΎ измСнСния. Π’ качСствС ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° установлСны условия использования для Π½Π΅Ρ€Π°Π·Ρ€ΡƒΡˆΠ°ΡŽΡ‰Π΅Π³ΠΎ контроля сталСй Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² измСрСния ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² установкой, аттСстованной ΠΏΠΎ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ измСрСния

    Расчёт ΠΏΠΎΠΏΡ€Π°Π²ΠΎΡ‡Π½Ρ‹Ρ… коэффициСнтов ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΈ твёрдости ΠΏΠΎ ВиккСрсу Π½Π° нСплоской повСрхности

    Get PDF
    The exact determination of Vickers HV hardness is important for determining of the product material mechanical properties. An important aspect of measuring HV is to obtain its values on a non-planar surface. Regulatory documents contain table values of correction factorsΒ KΒ which depend on the surface shape (convex or concave, spherical or cylindrical), its curvature (diameterΒ D) and hardness (arithmetic meanΒ dΒ of indentation diagonal lengths) but this does not solved the problem. TheΒ KΒ values forΒ d/DΒ ratios not given in the tables are determined by interpolation from the closest to the measured tabulatedΒ d/DΒ values. The error in the representation of these tabulatedΒ d/DΒ values is fully included in the error of determining theΒ KΒ coefficient for the measuredΒ d/DΒ ratio. The aim of the work was to simplify the calculation of correction factorsΒ KΒ for Vickers hardness measurements on non-planar surfaces and to reduce the calculation error compared to the methodology governed by the regulations.The method presented is based on a statistical analysis ofΒ KΒ coefficients, presented in regulatory documents for cases considered in the form of tables. The sufficiency of using of a quadratic power function for approximatingΒ K(d/D) dependences and the necessity of fulfilling the physically justified conditionΒ K ≑ 1 at zero curvature of tested surface have been substantiated. Simplification of calculation ofΒ KΒ coefficient and decrease of calculation error in comparison with the recommended in the regulatory documents obtaining ofΒ KΒ value by linear interpolation relative to two adjacent table values are shown.The reduction of the calculation error in comparison with the calculation recommended in the regulatory documents occurred because of the reason that when calculating by the developed formulas, the error in the value of the calculated for a specific value ofΒ d/DΒ coefficientΒ KΒ is averaged over all n values ofΒ d/DΒ given in the table of GOST for a given surface. That is, the error is reduced by a factor of about √n 2 in comparison with the calculation according to the regulated procedure. This is illustrated by the above numerical data and an example of the use of the method.The obtained formulas for calculation of correction coefficientsΒ KΒ when measuring hardness HV on spherical and cylindrical (concave and convex) surfaces are reasonable to use for automatic calculation of HV on items with a non-planar surface.Π’ΠΎΡ‡Π½ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ твёрдости HV ΠΏΠΎ ВиккСрсу Π²Π°ΠΆΠ½ΠΎ для опрСдСлСния мСханичСских свойств ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ. Π’Π°ΠΆΠ½Ρ‹ΠΌ аспСктом измСрСния HV являСтся ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π΅Ρ‘ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π½Π° нСплоской повСрхности. Π’ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ Π² Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Ρ‹ Ρ‚Π°Π±Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΏΠΎΠΏΡ€Π°Π²ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ΠΎΠ²Β Πš, зависящих ΠΎΡ‚ Ρ„ΠΎΡ€ΠΌΡ‹ (выпуклая ΠΈΠ»ΠΈ вогнутая, сфСричСская ΠΈΠ»ΠΈ цилиндричСская) повСрхности, Π΅Ρ‘ ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹ (Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π°Β D) ΠΈ твёрдости (срСднСго арифмСтичСского dΒ Π΄Π»ΠΈΠ½ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΠΎΡ‚ΠΏΠ΅Ρ‡Π°Ρ‚ΠΊΠ°) Π½Π΅ Ρ€Π΅ΡˆΠ°Π΅Ρ‚ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ. Π—Π½Π°Ρ‡Π΅Π½ΠΈΡΒ ΠšΒ Π΄Π»Ρ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉΒ d/D, Π½Π΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½Ρ‹Ρ… Π² Ρ‚Π°Π±Π»ΠΈΡ†Π°Ρ…, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ интСрполяциСй ΠΎΡ‚ Π±Π»ΠΈΠΆΠ°ΠΉΡˆΠΈΡ… ΠΊ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½Π½ΠΎΠΌΡƒ Ρ‚Π°Π±Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉΒ d/D. ΠŸΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ прСдставлСния этих Ρ‚Π°Π±Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉΒ d/DΒ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ опрСдСлСния искомого ΠΊΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚Π°Β ΠšΒ Π΄Π»Ρ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΒ d/D. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ – ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΈΠ΅ расчёта ΠΏΠΎΠΏΡ€Π°Π²ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ΠΎΠ²Β ΠšΒ ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΈ твёрдости ΠΏΠΎ ВиккСрсу Π½Π° нСплоских повСрхностях ΠΈ сниТСниС ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ расчёта ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΠΉ, Ρ€Π΅Π³Π»Π°ΠΌΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° основана Π½Π° статистичСском Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΊΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ΠΎΠ²Β Πš, прСдставлСнных Π² Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ… для рассмотрСнных случаСв Π² Π²ΠΈΠ΄Π΅ Ρ‚Π°Π±Π»ΠΈΡ†. Обоснована Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ использования ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ стСпСнной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ для аппроксимации Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚Π΅ΠΉΒ Πš(d/D) ΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ выполнСния физичСски обоснованного ΡƒΡΠ»ΠΎΠ²ΠΈΡΒ ΠšΒ β‰‘ 1 ΠΏΡ€ΠΈ Π½ΡƒΠ»Π΅Π²ΠΎΠΉ ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Π΅ испытуСмой повСрхности. Показано ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΈΠ΅ расчёта ΠΊΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚Π°Β ΠšΒ ΠΈ сниТСниС ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ расчёта ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Π² Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ… ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡΒ ΠšΒ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ интСрполяциСй ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π΄Π²ΡƒΡ… сосСдних Ρ‚Π°Π±Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ.Π‘Π½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ расчёта ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с расчётом, Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Π² Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ…, происходит Π·Π° счёт Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ расчётС ΠΏΠΎ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ Π² Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ рассчитанного для ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠ³ΠΎ значСния d/DΒ ΠΊΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚Π°Β ΠšΒ ΡƒΡΡ€Π΅Π΄Π½ΡΠ΅Ρ‚ΡΡ ΠΏΠΎ всСм n значСниям d/D, ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½Ρ‹ΠΌ Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅ Π“ΠžΠ‘Π’Π° для Π΄Π°Π½Π½ΠΎΠΉ повСрхности. Π’ΠΎ Π΅ΡΡ‚ΡŒ сниТаСтся ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Π² √n 2 Ρ€Π°Π· ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с расчётом ΠΏΠΎ Ρ€Π΅Π³Π»Π°ΠΌΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ΅. Π­Ρ‚ΠΎ ΠΈΠ»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½Ρ‹Π΅ числСнныС Π΄Π°Π½Π½Ρ‹Π΅ ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ использования ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ.ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для расчёта ΠΏΠΎΠΏΡ€Π°Π²ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ΠΎΠ²Β ΠšΒ ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΈ твёрдости HV Π½Π° сфСричСских ΠΈ цилиндричСских (Π²ΠΎΠ³Π½ΡƒΡ‚Ρ‹Ρ… ΠΈ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹Ρ…) повСрхностях цСлСсообразно ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для автоматичСского расчёта HV Π½Π° издСлиях с нСплоской ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ

    ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° опрСдСлСния эффСктивной Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ Ρ†Π΅ΠΌΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ слоя стали

    Get PDF
    Highly loaded transmission gears are cemented and hardened. An important parameter of the hardened cemented layer is its effective thickness hef . Metal banding and the unavoidable instrumental error in hardness measuring have a great influence on the reliability of hefΒ determination. The purpose of this article was to develop a methodology to improve the reliability of determining of the effective thickness hefΒ of the hardened layer in steel after carburizing and quenching.The value of hefΒ is the distance h from the surface of the product to the hardness zone of 50 HRC. The article substantiates that approximation of hardness change from the distance h to the product surface will allow to obtain a more reliable dependence of hardness change in the investigated area when making hardness measurements in a wider range of distance h. Therefore, to increase the reliability of hef determination, results of the HV0.5 hardness measurement in an extended range of changes in h in the vicinity of the analyzed zone were used. The HV0.5 measurement results are converted to HRC hardness values using the formula recommended by the international standard. The HRC(h) distribution of HRC hardness values in the measurement area is interpolated by a second-degree polynomial which physically correctly reflects the change in metal hardness in the analyzed area. The resulting polynomial is used to determine of the distance hef at which the hardness takes on a value of 50 HRC. The methodology was used to determine the hefΒ of an 18KhGT steel gear wheel after carburizing and quenching. It is shown that results of two independent measurements of the hef sample differ from each other by 0.003 mm. This is significantly less than the permissible error of 0.02 mm of the hefΒ determination according to the standard technique. The error of hef determination is reduced by extending the range of variation of h and statistically valid interpolation of the monotonic change in hardness with the distance from the surface of the item in the measurement area. The developed method of determining the effective thickness hefΒ of the hardened steel layer consists in determining the distribution of its hardness in the expanded vicinity of the hef area, approximating the obtained dependence by a polynomial of the second degree and solving the square equation obtained with its use. The technique provides a significant reduction in the influence of the structural banding of the metal and the inevitable error in measuring hardness on the result of determining the hefΒ . Its application will allow to optimize the cementation regimes of gear wheels to increase their service life.ВысоконагруТСнныС Π·ΡƒΠ±Ρ‡Π°Ρ‚Ρ‹Π΅ колёса трансмиссий ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°ΡŽΡ‚ Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ ΠΈ Π·Π°ΠΊΠ°Π»ΠΊΠ΅. Π’Π°ΠΆΠ½Ρ‹ΠΌ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ ΡƒΠΏΡ€ΠΎΡ‡Π½Ρ‘Π½Π½ΠΎΠ³ΠΎ Ρ†Π΅ΠΌΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ слоя являСтся Π΅Π³ΠΎ эффСктивная Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Π° hefΒ . Π‘ΠΎΠ»ΡŒΡˆΠΎΠ΅ влияниС Π½Π° Π΄ΠΎΡΡ‚ΠΎΠ²Π΅Ρ€Π½ΠΎΡΡ‚ΡŒ опрСдСлСния hefΒ ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΠΎΠ»ΠΎΡΡ‡Π°Ρ‚ΠΎΡΡ‚ΡŒ ΠΌΠ΅Ρ‚Π°Π»Π»Π° ΠΈ нСизбСТная ΠΈΠ½ΡΡ‚Ρ€ΡƒΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ измСрСния твёрдости. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ – Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ достовСрности опрСдСлСния эффСктивной Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ hefΒ ΡƒΠΏΡ€ΠΎΡ‡Π½Ρ‘Π½Π½ΠΎΠ³ΠΎ слоя Π² стали послС Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ ΠΈ Π·Π°ΠΊΠ°Π»ΠΊΠΈ.Π—Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ hefΒ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‚ расстояниС h ΠΎΡ‚ повСрхности издСлия Π΄ΠΎ Π·ΠΎΠ½Ρ‹ с Ρ‚Π²Ρ‘Ρ€Π΄ΠΎΡΡ‚ΡŒΡŽ 50 HRC. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ обосновано, Ρ‡Ρ‚ΠΎ аппроксимация измСнСния твёрдости ΠΎΡ‚ расстояния h Π΄ΠΎ повСрхности издСлия ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ Π΄ΠΎΡΡ‚ΠΎΠ²Π΅Ρ€Π½ΡƒΡŽ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ измСнСния твёрдости Π² исслСдуСмой Π·ΠΎΠ½Π΅ ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ твёрдости Π² Π±ΠΎΠ»Π΅Π΅ ΡˆΠΈΡ€ΠΎΠΊΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ расстояний h. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ достовСрности опрСдСлСния hefΒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ измСрСния твёрдости HV0,5 Π² Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½Π½ΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ h Π² окрСстности Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Π·ΠΎΠ½Ρ‹. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ измСрСния HV0,5 пСрСсчитаны Π² значСния твёрдости HRC ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅, Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½Ρ‹ΠΌ стандартом. РаспрСдСлСниС HRC(h) Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ твёрдости HRC Π² области измСрСния ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΎΠΌ Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни, физичСски Π²Π΅Ρ€Π½ΠΎ ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ твёрдости ΠΌΠ΅Ρ‚Π°Π»Π»Π° Π² Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Π·ΠΎΠ½Π΅. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌ использован для опрСдСлСния расстояния hefΒ , ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Ρ‚Π²Ρ‘Ρ€Π΄ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ 50 HRC. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° использована для опрСдСлСния hefΒ Π·ΡƒΠ±Ρ‡Π°Ρ‚ΠΎΠ³ΠΎ колСса ΠΈΠ· стали 18Π₯Π“Π’ послС Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ ΠΈ Π·Π°ΠΊΠ°Π»ΠΊΠΈ. Показано, Ρ‡Ρ‚ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π΄Π²ΡƒΡ… нСзависимых ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ hefΒ ΠΎΠ±Ρ€Π°Π·Ρ†Π° ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ Π΄Ρ€ΡƒΠ³ ΠΎΡ‚ Π΄Ρ€ΡƒΠ³Π° Π½Π° 0,003 ΠΌΠΌ. Π­Ρ‚ΠΎ сущСствСнно мСньшС допустимой ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ 0,02 ΠΌΠΌ опрСдСлСния hefΒ ΠΏΠΎ стандартной ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ΅. ΠŸΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒ опрСдСлСния hef сниТСна Π·Π° счёт Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΡ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° измСнСния h ΠΈ статистичСски обоснованной интСрполяции ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½ΠΎΠ³ΠΎ измСнСния твёрдости с расстояниСм ΠΎΡ‚ повСрхности издСлия Π² области измСрСния.Разработанная ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° опрСдСлСния эффСктивной Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ hefΒ ΡƒΠΏΡ€ΠΎΡ‡Π½Ρ‘Π½Π½ΠΎΠ³ΠΎ слоя стали Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ распрСдСлСния Π΅Ρ‘ твёрдости Π² Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½Π½ΠΎΠΉ окрСстности области hefΒ , аппроксимации ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ зависимости ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΎΠΌ Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ с Π΅Π³ΠΎ использованиСм ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° обСспСчиваСт сущСствСнноС сниТСниС влияния структурной полосчатости ΠΌΠ΅Ρ‚Π°Π»Π»Π° ΠΈ Π½Π΅ΠΈΠ·Π±Π΅ΠΆΠ½ΠΎΠΉ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ измСрСния твёрдости Π½Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ опрСдСлСния hefΒ . Π•Ρ‘ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π΅ΠΆΠΈΠΌΡ‹ Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ Π·ΡƒΠ±Ρ‡Π°Ρ‚Ρ‹Ρ… колёс для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ рСсурса ΠΈΡ… эксплуатации

    РасчСтная модСль напряТСнного состояния Π·ΠΎΠ½Ρ‹ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π° Π·ΡƒΠ±ΡŒΠ΅Π² повСрхностно ΡƒΠΏΡ€ΠΎΡ‡Π½Π΅Π½Π½Ρ‹Ρ… Π·ΡƒΠ±Ρ‡Π°Ρ‚Ρ‹Ρ… колСс

    Get PDF
    Stress state of the surface layer in the contact zone of mating teeth of cylindrical gears has been studied. It is established that stressed state of contact surfaces in the meshing pole of mating teeth is characterized not only by surface contact stresses, but also by deep equivalent stresses. It is shown that under contact loading the stressed state of surface layer is heterogeneous and changes with distance from the surface. Analysis and substantiation of calculation model for stressed state of diffusion layer in contact zone of mating teeth of surface-hardened gears are performed. Value of coefficient, which takes into account influence of normal stresses on efficiency of tangential ones, is specified. Reliability and validity of model of calculation of stressed condition of surface layer in contact zone of mating teeth of surface-hardened gears were estimated according to results of full-scale bench tests of the gears made of cemented steel 20Π₯ГНР. The values of contact stresses in tooth meshing pole were corrected considering the load concentration across the width of cogged ring gear. Spalling depth of damaged teeth was determined by measuring impressions taken from the teeth of each examined gear with methacrylic resin. It is established that the nucleation zone of deep contact pitting for gears with 6.5 mm module is on the depth of occurrence of calculated maximum equivalent shear stresses. The consistency of the calculation results with the experimental data shows the validity of the calculated stress-strain model for involute gears.РассмотрСно напряТСнноС состояниС повСрхностного слоя Π² Π·ΠΎΠ½Π΅ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π° сопряТСнных Π·ΡƒΠ±ΡŒΠ΅Π² цилиндричСских Π·ΡƒΠ±Ρ‡Π°Ρ‚Ρ‹Ρ… колСс, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ характСризуСтся Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ повСрхностными, Π½ΠΎ ΠΈ Π³Π»ΡƒΠ±ΠΈΠ½Π½Ρ‹ΠΌΠΈ эквивалСнтными напряТСниями. Показано, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠΌ Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½ΠΈΠΈ напряТСнноС состояниС повСрхностного слоя Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ΅ ΠΈ зависит ΠΎΡ‚ расстояния ΠΎΡ‚ повСрхности. Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ Π°Π½Π°Π»ΠΈΠ· ΠΈ обоснованиС расчСтной ΠΌΠΎΠ΄Π΅Π»ΠΈ напряТСнного состояния Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ слоя Π² Π·ΠΎΠ½Π΅ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π° сопряТСнных Π·ΡƒΠ±ΡŒΠ΅Π² повСрхностно ΡƒΠΏΡ€ΠΎΡ‡Π½Π΅Π½Π½Ρ‹Ρ… Π·ΡƒΠ±Ρ‡Π°Ρ‚Ρ‹Ρ… колСс. Π£Ρ‚ΠΎΡ‡Π½Π΅Π½ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ коэффициСнта, ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‰Π΅Π³ΠΎ влияниС Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… напряТСний Π½Π° ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ…. Π”ΠΎΡΡ‚ΠΎΠ²Π΅Ρ€Π½ΠΎΡΡ‚ΡŒ ΠΈ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΠΎΡΡ‚ΡŒ ΠΌΠΎΠ΄Π΅Π»ΠΈ расчСта напряТСнного состояния повСрхностного слоя Π² Π·ΠΎΠ½Π΅ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π° сопряТСнных Π·ΡƒΠ±ΡŒΠ΅Π² повСрхностно ΡƒΠΏΡ€ΠΎΡ‡Π½Π΅Π½Π½Ρ‹Ρ… Π·ΡƒΠ±Ρ‡Π°Ρ‚Ρ‹Ρ… колСс ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΏΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ Π½Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… стСндовых испытаний Π·ΡƒΠ±Ρ‡Π°Ρ‚Ρ‹Ρ… ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡, ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Ρ… ΠΈΠ· Ρ†Π΅ΠΌΠ΅Π½Ρ‚ΡƒΠ΅ΠΌΠΎΠΉ стали 20Π₯ГНР. ЗначСния ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹Ρ… напряТСний Π² полюсС зацСплСния Π·ΡƒΠ±ΡŒΠ΅Π² ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ ΠΏΠΎ ΡˆΠΈΡ€ΠΈΠ½Π΅ Π·ΡƒΠ±Ρ‡Π°Ρ‚ΠΎΠ³ΠΎ Π²Π΅Π½Ρ†Π°. Π“Π»ΡƒΠ±ΠΈΠ½Ρƒ Π²Ρ‹ΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½Π½Ρ‹Ρ… Π·ΡƒΠ±ΡŒΠ΅Π² опрСдСляли ΠΏΡƒΡ‚Π΅ΠΌ Π·Π°ΠΌΠ΅Ρ€ΠΎΠ² слСпков, снятых с Π·ΡƒΠ±ΡŒΠ΅Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ исслСдованной ΡˆΠ΅ΡΡ‚Π΅Ρ€Π½ΠΈ с использованиСм ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»ΠΎΠ²ΠΎΠΉ смолы. УстановлСно, Ρ‡Ρ‚ΠΎ Π·ΠΎΠ½Π° зароТдСния Π³Π»ΡƒΠ±ΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠ³ΠΎ Π²Ρ‹ΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΡ для ΡˆΠ΅ΡΡ‚Π΅Ρ€Π΅Π½ с ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΌ 6,5 ΠΌΠΌ находится Π½Π° Π³Π»ΡƒΠ±ΠΈΠ½Π΅ залСгания расчСтных ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… эквивалСнтных ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… напряТСний. Π‘ΠΎΠ³Π»Π°ΡΠΎΠ²Π°Π½Π½ΠΎΡΡ‚ΡŒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² расчСта с ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΠΎΡΡ‚ΡŒ примСнСния расчСтной ΠΌΠΎΠ΄Π΅Π»ΠΈ напряТСнного состояния для ΡΠ²ΠΎΠ»ΡŒΠ²Π΅Π½Ρ‚Π½Ρ‹Ρ… Π·ΡƒΠ±Ρ‡Π°Ρ‚Ρ‹Ρ… колСс

    Calculation of Correction Factors for Vickers Hardness Measurements on a Non-Planar Surface

    Get PDF
    The exact determination of Vickers HV hardness is important for determining of the product material mechanical properties. An important aspect of measuring HV is to obtain its values on a non-planar surface. Regulatory documents contain table values of correction factors K which depend on the surface shape (convex or concave, spherical or cylindrical), its curvature (diameter D) and hardness (arithmetic mean d of indentation diagonal lengths) but this does not solved the problem. The K values for d/D ratios not given in the tables are determined by interpolation from the closest to the measured tabulated d/D values. The error in the representation of these tabulated d/D values is fully included in the error of determining the K coefficient for the measured d/D ratio. The aim of the work was to simplify the calculation of correction factors K for Vickers hardness measurements on non-planar surfaces and to reduce the calculation error compared to the methodology governed by the regulations. The method presented is based on a statistical analysis of K coefficients, presented in regulatory documents for cases considered in the form of tables. The sufficiency of using of a quadratic power function for approximating K(d/D) dependences and the necessity of fulfilling the physically justified condition K ≑ 1 at zero curvature of tested surface have been substantiated. Simplification of calculation of K coefficient and decrease of calculation error in comparison with the recommended in the regulatory documents obtaining of K value by linear interpolation relative to two adjacent table values are shown. The reduction of the calculation error in comparison with the calculation recommended in the regulatory documents occurred because of the reason that when calculating by the developed formulas, the error in the value of the calculated for a specific value of d/D coefficient K is averaged over all n values of d/D given in the table of GOST for a given surface. That is, the error is reduced by a factor of about in comparison with the calculation according to the regulated procedure. This is illustrated by the above numerical data and an example of the use of the method. The obtained formulas for calculation of correction coefficients K when measuring hardness HV on spherical and cylindrical (concave and convex) surfaces are reasonable to use for automatic calculation of HV on items with a non-planar surface

    Structure and kinetics in the freezing of nearly hard spheres

    Full text link
    We consider homogeneous crystallisation rates in confocal microscopy experiments on colloidal nearly hard spheres at the single particle level. These we compare with Brownian dynamics simuations by carefully modelling the softness in the interactions with a Yukawa potential, which takes account of the electrostatic charges present in the experimental system. Both structure and dynamics of the colloidal fluid are very well matched between experiment and simulation, so we have confidence that the system simulated is close to that in the experiment. In the regimes we can access, we find reasonable agreement in crystallisation rates between experiment and simulations, noting that the larger system size in experiments enables the formation of critical nuclei and hence crystallisation at lower supersaturations than the simulations. We further examine the structure of the metastable fluid with a novel structural analysis, the topological cluster classification. We find that at densities where the hard sphere fluid becomes metastable, the dominant structure is a cluster of m=10 particles with five-fold symmetry. At a particle level, we find three regimes for the crystallisation process: metastable fluid (dominated by m=10 clusters), crystal and a transition region of frequent hopping between crystal-like environments and other (m\neq10) structuresComment: 10 page
    corecore