493 research outputs found
Protective Effect of Geranylgeranylacetone via Enhancement of HSPB8 Induction in Desmin-Related Cardiomyopathy
An arg120gly (R120G) missense mutation in HSPB5 (alpha-beta-crystallin ), which belongs to the small heat shock protein (HSP) family, causes desmin-related cardiomyopathy (DRM), a muscle disease that is characterized by the formation of inclusion bodies, which can contain pre-amyloid oligomer intermediates (amyloid oligomer). While we have shown that small HSPs can directly interrupt amyloid oligomer formation, the in vivo protective effects of the small HSPs on the development of DRM is still uncertain.In order to extend the previous in vitro findings to in vivo, we used geranylgeranylacetone (GGA), a potent HSP inducer. Oral administration of GGA resulted not only in up-regulation of the expression level of HSPB8 and HSPB1 in the heart of HSPB5 R120G transgenic (R120G TG) mice, but also reduced amyloid oligomer levels and aggregates. Furthermore, R120G TG mice treated with GGA exhibited decreased heart size and less interstitial fibrosis, as well as improved cardiac function and survival compared to untreated R120G TG mice. To address possible mechanism(s) for these beneficial effects, cardiac-specific transgenic mice expressing HSPB8 were generated. Overexpression of HSPB8 led to a reduction in amyloid oligomer and aggregate formation, resulting in improved cardiac function and survival. Treatment with GGA as well as the overexpression of HSPB8 also inhibited cytochrome c release from mitochondria, activation of caspase-3 and TUNEL-positive cardiomyocyte death in the R120G TG mice.Expression of small HSPs such as HSPB8 and HSPB1 by GGA may be a new therapeutic strategy for patients with DRM
Cardioprotective Effect of Nicorandil, a Mitochondrial ATP-Sensitive Potassium Channel Opener, Prolongs Survival in HSPB5 R120G Transgenic Mice
BACKGROUND: Transgenic (TG) mice with overexpression of an arg120gly (R120G) missense mutation in HSPB5 display desmin-related cardiomyopathy, which is characterized by formation of aggresomes. It is also known that progressive mitochondrial abnormalities and apoptotic cell death occur in the hearts of R120G TG mice. The role of mitochondrial dysfunction and apoptosis in disease progression, however, remains uncertain. METHODS AND RESULTS: Mitochondrial abnormalities and apoptotic cell death induced by overexpression of HSPB5 R120G were analyzed in neonatal rat cardiomyocytes. Overexpression of mutant HSPB5 led to development of aggresomes with a concomitant reduction in cell viability in the myocytes. Overexpression of mutant HSPB5 induced a reduction in the cytochrome c level in the mitochondrial fraction and a corresponding increase in the cytoplasmic fraction in the myocytes. Down-regulation of BCL2 and up-regulation of BAX were detected in the myocytes expressing the mutant HSPB5. Concomitant with mitochondrial abnormality, the activation of caspase-3 and increased apoptotic cell death was observed. Cell viability was dose-dependently recovered in myocytes overexpressing HSPB5 R120G by treatment with nicorandil a mitochondrial ATP-sensitive potassium channel opener. Nicorandil treatment also inhibited the increase in BAX, the decrease in BCL2, activation of caspase-3 and apoptotic cell death by mutant HSPB5. To confirm the results of the in-vitro study, we analyzed the effect of nicorandil in HSPB5 R120G TG mice. Nicorandil treatment appeared to reduce mitochondrial impairment and apoptotic cell death and prolonged survival in HSPB5 R120G TG mice. CONCLUSIONS: Nicorandil may prolong survival in HSPB5 R120G TG mice by protecting against mitochondrial impairments
Improvement in cardiac energetics by perhexiline in heart failure due to dilated cardiomyopathy
Objectives: The aim of this study was to determine whether short-term treatment with perhexiline improves cardiac energetics, left ventricular function, and symptoms of heart failure by altering cardiac substrate utilization. Background: Perhexiline improves exercise capacity and left ventricular ejection fraction (LVEF) in patients with heart failure (HF). P cardiac magnetic resonance spectroscopy can be used to quantify the myocardial phosphocreatine/adenosine triphosphate ratio. Because improvement of HF syndrome can improve cardiac energetics secondarily, we investigated the effects of short-term perhexiline therapy. Methods: Patients with systolic HF of nonischemic etiology (n= 50, 62 ± 1.8 years of age, New York Heart Association functional class II to IV, LVEF: 27.0 ± 1.44%) were randomized to receive perhexiline 200 mg or placebo for 1 month in a double-blind fashion. Clinical assessment, echocardiography, and P cardiac magnetic resonance spectroscopy were performed at baseline and after 1 month. A substudy of 22 patients also underwent cross-heart blood sampling at completion of the study to quantify metabolite utilization. Results: Perhexiline therapy was associated with a 30% increase in the phosphocreatine/adenosine triphosphate ratio (from 1.16 ± 0.39 to 1.51 ± 0.51; p< 0.001) versus a 3% decrease with placebo (from 1.36 ± 0.31 to 1.34 ± 0.31; p=0.37). Perhexiline therapy also led to an improvement in New York Heart Association functional class compared with placebo (p= 0.036). Short-term perhexiline therapy did not change LVEF. Cross-heart measures of cardiac substrate uptake and respiratory exchange ratio (which reflects the ratio of substrates used) did not differ between patients who received perhexiline versus placebo. Conclusions: Perhexiline improves cardiac energetics and symptom status with no evidence of altered cardiac substrate utilization. No change in LVEF is seen at this early stage. (Metabolic Manipulation in Chronic Heart Failure; NCT00841139)
Effect of CYP3A5*3 genetic variant on the metabolism of direct-acting antivirals in vitro : a different effect on asunaprevir versus daclatasvir and beclabuvir
Direct-acting antivirals, asunaprevir (ASV), daclatasvir (DCV), and beclabuvir (BCV) are known to be mainly metabolized by CYP3A enzymes; however, the differences in the detailed metabolic activities of CYP3A4 and CYP3A5 on these drugs are not well clarified. The aim of the present study was to elucidate the relative contributions of CYP3A4 and CYP3A5 to the metabolism of ASV, DCV, and BCV, as well as the effect of CYP3A5*3 genetic variant in vitro. The amount of each drug and their major metabolites were determined using LC-MS/MS. Recombinant CYP3As and CYP3A5*3-genotyped human liver microsomes (CYP3A5 expressers or non-expressers) were used for the determination of their metabolic activities. The contribution of CYP3A5 to ASV metabolism was considerable compared to that of CYP3A4. Consistently, ASV metabolic activity in CYP3A5 expressers was higher than those in CYP3A5 non-expresser. Moreover, CYP3A5 expression level was significantly correlated with ASV metabolism. In contrast, these observations were not found in DCV and BCV metabolism. To our knowledge, this is the first study to directly demonstrate the effect of CYP3A5*3 genetic variants on the metabolism of ASV. The findings of the present study may provide basic information on ASV, DCV, and BCV metabolisms
Revisiting Frank–Starling: regulatory light chain phosphorylation alters the rate of force redevelopment (ktr) in a length-dependent fashion
Force and power in cardiac muscle have a known dependence on phosphorylation of the myosin-associated regulatory light chain (RLC). We explore the effect of RLC phosphorylation on the ability of cardiac preparations to redevelop force (ktr ) in maximally activating [Ca2+ ]. Activation was achieved by rapidly increasing the temperature (temperature-jump of 0.5-20ºC) of permeabilized trabeculae over a physiological range of sarcomere lengths (1.85-1.94 μm). The trabeculae were subjected to shortening ramps over a range of velocities and the extent of RLC phosphorylation was varied. The latter was achieved using an RLC-exchange technique, which avoids changes in the phosphorylation level of other proteins. The results show that increasing RLC phosphorylation by 50% accelerates ktr by ∼50%, irrespective of the sarcomere length, whereas decreasing phosphorylation by 30% slows ktr by ∼50%, relative to the ktr obtained for in vivo phosphorylation. Clearly, phosphorylation affects the magnitude of ktr following step shortening or ramp shortening. Using a two-state model, we explore the effect of RLC phosphorylation on the kinetics of force development, which proposes that phosphorylation affects the kinetics of both attachment and detachment of cross-bridges. In summary, RLC phosphorylation affects the rate and extent of force redevelopment. These findings were obtained in maximally activated muscle at saturating [Ca2+ ] and are not explained by changes in the Ca2+ -sensitivity of acto-myosin interactions. The length-dependence of the rate of force redevelopment, together with the modulation by the state of RLC phosphorylation, suggests that these effects play a role in the Frank-Starling law of the heart.Published versio
The Effectiveness of Simultaneous Combination Therapy Using S-1 and Nedaplatin with Radiation for Five Cases of Maxillary Cancer
In our department, we provide treatment for malignant head and neck tumors with the goal of preserving organs and function. We report the treatment outcomes for five patients with maxillary cancer who underwent S-1 and nedaplatin treatment with concurrent radiation therapy (SN therapy) in our department from April 2005 to March 2009. The patients included one case classified as T2N0M0 and four cases classified as T4N0M0. All patients were male and were aged between 29 and 67 years with a mean age of 55.6 years. Among the five cases, four achieved cancer-free survival with preservation of all functions after undergoing treatment. In the remaining case, the tumor did not disappear but was locally controlled via superselective arterial injection and CyberKnife treatment; however, pulmonary metastasis occurred and the patient is surviving with cancer. SN therapy has allowed a reduction in the extent of surgery required and the preservation of organs and function. It will be necessary to study an increased number of cases in the future to determine the survival rate and the effectiveness of organ and function preservation in maxillary cancer patients after SN therapy
- …