205 research outputs found
Low Tidal Volume Ventilation Is Poorly Implemented for Patients in North American and United Kingdom ICUs Using Electronic Health Records
BACKGROUND: Low tidal volume ventilation (LTVV; 48 h. We observed trends over time and investigated whether LTVV was associated with patient outcomes (30-day mortality and duration of ventilation) and identified strategies to improve adherence to LTVV. METHODS: Factors associated with adherence to LTVV were assessed in all patients in both databases who were mechanically ventilated for > 48 h. We observed trends over time and investigated whether LTVV was associated with patient outcomes (30-day mortality and duration of ventilation) and identified strategies to improve adherence to LTVV. RESULTS: A total of 5,466 (Critical Care Health Informatics Collaborative [CCHIC]) and 7,384 electronic ICU collaborative research database [eICU-CRD] patients were ventilated for > 48 h and had data of suitable quality for analysis. The median tidal volume (VT) values were 7.48 mL/kg PBW (CCHIC) and 7.91 mL/kg PBW (eICU-CRD). The patients at highest risk of not receiving LTVV were shorter than 160 cm (CCHIC) and 165 cm (eICU-CRD). Those with BMI > 30 kg/m2 (CCHIC OR, 1.9 [95% CI, 1.7-2.13]; eICU-CRD OR, 1.61 [95% CI, 1.49-1.75]) and female patients (CCHIC OR, 2.39 [95% CI, 2.16-2.65]; eICU-CRD OR, 2.29 [95% CI, 2.26-2.31]) were at increased risk of having median VT > 8 mL/kg PBW. Patients with median VT 8 mL/kg PBW was associated with worse patient outcomes
Assessment and attribution of mangrove forest changes in the indian sundarbans from 2000 to 2020
The Indian Sundarbans, together with Bangladesh, comprise the largest mangrove forest in the world. Reclamation of the mangroves in this region ceased in the 1930s. However, they are still subject to adverse environmental influences, such as sediment starvation due to migration of the main river channels in the Ganges–Brahmaputra delta over the last few centuries, cyclone landfall, wave action from the Bay of Bengal—changing hydrology due to upstream water diversion—and the pervasive effects of relative sea-level rise. This study builds on earlier work to assess changes from 2000 to 2020 in mangrove extent, genus composition, and mangrove ‘health’ indicators, using various vegetation indices derived from Landsat and MODIS satellite imagery by performing maximum likelihood supervised classification. We show that about 110 km2 of mangroves disappeared within the reserve forest due to erosion, and 81 km2 were gained within the inhabited part of Sundarbans Biosphere Reserve (SBR) through plantation and regeneration. The gains are all outside the contiguous mangroves. However, they partially compensate for the losses of the contiguous mangroves in terms of carbon. Genus composition, analyzed by amalgamating data from published literature and ground-truthing surveys, shows change towards more salt-tolerant genus accompanied by a reduction in the prevalence of freshwater-loving Heiritiera, Nypa, and Sonneratia assemblages. Health indicators, such as the enhanced vegetation index (EVI) and normalized differential vegetation index (NDVI), show a monotonic trend of deterioration over the last two decades, which is more pronounced in the sea-facing parts of the mangrove forests. An increase in salinity, a temperature rise, and rainfall reduction in the pre-monsoon and the post-monsoon periods appear to have led to such degradation. Collectively, these results show a decline in mangrove area and health, which poses an existential threat to the Indian Sundarbans in the long term, especially under scenarios of climate change and sea-level rise. Given its unique values, the policy process should acknowledge and address these threats
Tapasin assembly surveillance by the RNF185/Membralin ubiquitin ligase complex regulates MHC-I surface expression
\ua9 The Author(s) 2024.Immune surveillance by cytotoxic T cells eliminates tumor cells and cells infected by intracellular pathogens. This process relies on the presentation of antigenic peptides by Major Histocompatibility Complex class I (MHC-I) at the cell surface. The loading of these peptides onto MHC-I depends on the peptide loading complex (PLC) at the endoplasmic reticulum (ER). Here, we uncovered that MHC-I antigen presentation is regulated by ER-associated degradation (ERAD), a protein quality control process essential to clear misfolded and unassembled proteins. An unbiased proteomics screen identified the PLC component Tapasin, essential for peptide loading onto MHC-I, as a substrate of the RNF185/Membralin ERAD complex. Loss of RNF185/Membralin resulted in elevated Tapasin steady state levels and increased MHC-I at the surface of professional antigen presenting cells. We further show that RNF185/Membralin ERAD complex recognizes unassembled Tapasin and limits its incorporation into PLC. These findings establish a novel mechanism controlling antigen presentation and suggest RNF185/Membralin as a potential therapeutic target to modulate immune surveillance
Determination of total and available fractions of PAHs by SPME in oily wastewaters : overcoming interference from NAPL and NOM
Background, aim, and scope Polycyclic aromatic hydrocarbons (PAHs) are often found in oily wastewaters. Their presence is usually the result of human activities and has a negative effect on the environment. One important step in addressing this problem is to evaluate the effectiveness of PAH removal by biological processes since these are the most cost-effective treatments known today. Many techniques are presently available for PAH determination in wastewaters. Solid phase microextracion (SPME) is known to be one of the most effective techniques for this purpose. When analyzing complex matrices with substances such as natural organic matter (NOM) and non-aqueous phase liquids (NAPL), it is important to differentiate the free dissolved PAH from matrix-bonded PAH. PAHs associated with the bonded fraction are less susceptible to biological treatment. The present study concerns the development of a simple and suitable methodology for the determination of the freely dissolved and the total fraction of PAHs present in oily wastewaters. The methodology was then applied to an oily wastewater from a fuel station retention basin.
Material and methods Headspace SPME was used for analyzing PAH since the presence of a complex or dirty matrix in direct contact with the fiber may damage it. Four model PAHs—anthracene, fluorene, phenanthrene, and pyrene—were analyzed by GC-MS. Negligible depletion SPME technique was used to determine the free fraction. Total PAH was determined by enhancing the mass transfer from the bonded phase to the freely dissolved phase by temperature optimization and the use of the method of standard additions. The PAH absorption kinetics were determined in order to define the optimal sampling conditions for this method. The fitting of the experimental data to a mathematical model was accomplished using Berkeley Madonna software. Humic acid and silicon oil were used as model NOM and NAPL, respectively, to study the effect of these compounds on the decrease of SPME response. Then, the method was evaluated with wastewater from a fuel station spill retention basin.
Results The SPME kinetic parameters—k 1 (uptake rate), k 2 (desorption rate), and K SPME (partition coefficient)—were determined from experimental data modeling. The determination of the free fraction required 15-min sampling to ensure that PAH depletion from sample was below 1%. For total PAH, a 30-min extraction at 100°C ensured the maximum signal response in the GC-MS. For the determination of free and total PAHs, extractions were performed before reaching the SPME equilibrium. The wastewater used in this study had no free fraction of the analyzed PAHs. However, the four studied PAHs were found when the method for total PAH was used.
Discussion The addition of NOM and NAPL dramatically decreased the efficiency of the SPME. This decrease was the result of a greater partition of the PAHs to the NAPL and NOM phases. This fact was also observed in the analysis of the fuel station spill retention basin, where no free PAH was measured. However, using the method of standard addition for the determination of total PAH, it was possible to quantify all four PAHs.
Conclusions The method developed in the present study was found to be adequate to differentiate between free and total PAH present in oily wastewater. It was determined that the presence of NOM and NAPL had a negative effect on SPME efficiency.
Recommendations and perspectives The presence of binding substances had a great influence on SPME kinetics. Therefore, it is of extreme importance to determine their degree of interference when analyzing oily wastewaters or results can otherwise be erroneous. Other factors influencing the total PAH determinations should be considered in further studies.Fundação para a Ciência e a Tecnologia (FCT) - SFRH/BD/
18816/2004, POCI/AMB/61044/200
Coordinated repression of BIM and PUMA by Epstein-Barr virus latent genes maintains the survival of Burkitt lymphoma cells.
While the association of Epstein-Barr virus (EBV) with Burkitt lymphoma (BL) has long been recognised, the precise role of the virus in BL pathogenesis is not fully resolved. EBV can be lost spontaneously from some BL cell lines, and these EBV-loss lymphoma cells reportedly have a survival disadvantage. Here we have generated an extensive panel of EBV-loss clones from multiple BL backgrounds and examined their phenotype comparing them to their isogenic EBV-positive counterparts. We report that, while loss of EBV from BL cells is rare, it is consistently associated with an enhanced predisposition to undergo apoptosis and reduced tumorigenicity in vivo. Importantly, reinfection of EBV-loss clones with EBV, but surprisingly not transduction with individual BL-associated latent viral genes, restored protection from apoptosis. Expression profiling and functional analysis of apoptosis-related proteins and transcripts in BL cells revealed that EBV inhibits the upregulation of the proapoptotic BH3-only proteins, BIM and PUMA. We conclude that latent EBV genes cooperatively enhance the survival of BL cells by suppression of the intrinsic apoptosis pathway signalling via inhibition of the potent apoptosis initiators, BIM and PUMA.Cell Death and Differentiation advance online publication, 29 September 2017; doi:10.1038/cdd.2017.150
Embedding mRNA Stability in Correlation Analysis of Time-Series Gene Expression Data
Current methods for the identification of putatively co-regulated genes directly from gene expression time profiles are based on the similarity of the time profile. Such association metrics, despite their central role in gene network inference and machine learning, have largely ignored the impact of dynamics or variation in mRNA stability. Here we introduce a simple, but powerful, new similarity metric called lead-lag R2 that successfully accounts for the properties of gene dynamics, including varying mRNA degradation and delays. Using yeast cell-cycle time-series gene expression data, we demonstrate that the predictive power of lead-lag R2 for the identification of co-regulated genes is significantly higher than that of standard similarity measures, thus allowing the selection of a large number of entirely new putatively co-regulated genes. Furthermore, the lead-lag metric can also be used to uncover the relationship between gene expression time-series and the dynamics of formation of multiple protein complexes. Remarkably, we found a high lead-lag R2 value among genes coding for a transient complex
Seropositivity to Cytomegalovirus, Inflammation, All-Cause and Cardiovascular Disease-Related Mortality in the United States
Studies have suggested that CMV infection may influence cardiovascular disease (CVD) risk and mortality. However, there have been no large-scale examinations of these relationships among demographically diverse populations. The inflammatory marker C-reactive protein (CRP) is also linked with CVD outcomes and mortality and may play an important role in the pathway between CMV and mortality. We utilized a U.S. nationally representative study to examine whether CMV infection is associated with all-cause and CVD-related mortality. We also assessed whether CRP level mediated or modified these relationships., 2006 (N = 14153) in the National Health and Nutrition Examination Survey (NHANES) III (1988–1994). Cox proportional hazard models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for all-cause and CVD-related mortality by CMV serostatus. After adjusting for multiple confounders, CMV seropositivity remained statistically significantly associated with all-cause mortality (HR 1.19, 95% CI: 1.01, 1.41). The association between CMV and CVD-related mortality did not achieve statistical significance after confounder adjustment. CRP did not mediate these associations. However, CMV seropositive individuals with high CRP levels showed a 30.1% higher risk for all-cause mortality and 29.5% higher risk for CVD-related mortality compared to CMV seropositive individuals with low CRP levels.CMV was associated with a significant increased risk for all-cause mortality and CMV seropositive subjects who also had high CRP levels were at substantially higher risk for both for all-cause and CVD-related mortality than subjects with low CRP levels. Future work should target the mechanisms by which CMV infection and low-level inflammation interact to yield significant impact on mortality
Investigating the validity of current network analysis on static conglomerate networks by protein network stratification
<p>Abstract</p> <p>Background</p> <p>A molecular network perspective forms the foundation of systems biology. A common practice in analyzing protein-protein interaction (PPI) networks is to perform network analysis on a conglomerate network that is an assembly of all available binary interactions in a given organism from diverse data sources. Recent studies on network dynamics suggested that this approach might have ignored the dynamic nature of context-dependent molecular systems.</p> <p>Results</p> <p>In this study, we employed a network stratification strategy to investigate the validity of the current network analysis on conglomerate PPI networks. Using the genome-scale tissue- and condition-specific proteomics data in <it>Arabidopsis thaliana</it>, we present here the first systematic investigation into this question. We stratified a conglomerate <it>A. thaliana </it>PPI network into three levels of context-dependent subnetworks. We then focused on three types of most commonly conducted network analyses, i.e., topological, functional and modular analyses, and compared the results from these network analyses on the conglomerate network and five stratified context-dependent subnetworks corresponding to specific tissues.</p> <p>Conclusions</p> <p>We found that the results based on the conglomerate PPI network are often significantly different from those of context-dependent subnetworks corresponding to specific tissues or conditions. This conclusion depends neither on relatively arbitrary cutoffs (such as those defining network hubs or bottlenecks), nor on specific network clustering algorithms for module extraction, nor on the possible high false positive rates of binary interactions in PPI networks. We also found that our conclusions are likely to be valid in human PPI networks. Furthermore, network stratification may help resolve many controversies in current research of systems biology.</p
Regeneration of myelin sheaths of normal length and thickness in the zebrafish CNS correlates with growth of axons in caliber
Demyelination is observed in numerous diseases of the central nervous system, including multiple sclerosis (MS). However, the endogenous regenerative process of remyelination can replace myelin lost in disease, and in various animal models. Unfortunately, the process of remyelination often fails, particularly with ageing. Even when remyelination occurs, it is characterised by the regeneration of myelin sheaths that are abnormally thin and short. This imperfect remyelination is likely to have implications for the restoration of normal circuit function and possibly the optimal metabolic support of axons. Here we describe a larval zebrafish model of demyelination and remyelination. We employ a drug-inducible cell ablation system with which we can consistently ablate 2/3rds of oligodendrocytes in the larval zebrafish spinal cord. This leads to a concomitant demyelination of 2/3rds of axons in the spinal cord, and an innate immune response over the same time period. We find restoration of the normal number of oligodendrocytes and robust remyelination approximately two weeks after induction of cell ablation, whereby myelinated axon number is restored to control levels. Remarkably, we find that myelin sheaths of normal length and thickness are regenerated during this time. Interestingly, we find that axons grow significantly in caliber during this period of remyelination. This suggests the possibility that the active growth of axons may stimulate the regeneration of myelin sheaths of normal dimensions
Transcultural Diabetes Nutrition Therapy Algorithm: The Asian Indian Application
India and other countries in Asia are experiencing rapidly escalating epidemics of type 2 diabetes (T2D) and cardiovascular disease. The dramatic rise in the prevalence of these illnesses has been attributed to rapid changes in demographic, socioeconomic, and nutritional factors. The rapid transition in dietary patterns in India—coupled with a sedentary lifestyle and specific socioeconomic pressures—has led to an increase in obesity and other diet-related noncommunicable diseases. Studies have shown that nutritional interventions significantly enhance metabolic control and weight loss. Current clinical practice guidelines (CPGs) are not portable to diverse cultures, constraining the applicability of this type of practical educational instrument. Therefore, a transcultural Diabetes Nutrition Algorithm (tDNA) was developed and then customized per regional variations in India. The resultant India-specific tDNA reflects differences in epidemiologic, physiologic, and nutritional aspects of disease, anthropometric cutoff points, and lifestyle interventions unique to this region of the world. Specific features of this transculturalization process for India include characteristics of a transitional economy with a persistently high poverty rate in a majority of people; higher percentage of body fat and lower muscle mass for a given body mass index; higher rate of sedentary lifestyle; elements of the thrifty phenotype; impact of festivals and holidays on adherence with clinic appointments; and the role of a systems or holistic approach to the problem that must involve politics, policy, and government. This Asian Indian tDNA promises to help guide physicians in the management of prediabetes and T2D in India in a more structured, systematic, and effective way compared with previous methods and currently available CPGs
- …