580 research outputs found

    Molecular Characterization of Two Endothelin Pathways in East African Cichlid Fishes

    Get PDF
    The adaptive radiations of cichlid fishes in East Africa have been associated with the acquisition of evolutionary novelties as well as the ecological opportunities existing in the East African Great lakes. Two remarkable evolutionary innovations are the pharyngeal jaw apparatus, found in all cichlid species, and the anal fin egg-spots of mouthbrooding cichlids. Based on their conserved functions during the development of both the jaw apparatus and pigmentation, the endothelin ligands and receptors form a putative link between these naturally and sexually selected traits. Here we study the evolutionary history of four members of two endothelin pathways (Edn1/EdnrAa and Edn3b/EdnrB1a) to elucidate their possible roles during the evolution and development of key innovations in East African cichlids species. The analyses performed on partial sequences (ca. 6,000bp per taxon) show that all four endothelin family members evolved under purifying selection, although both ligands are characterized by an accelerated rate of protein evolution in comparison to the receptors. In accordance with earlier findings, we show that the mature protein sequence of Edn1 and Edn3 are highly conserved, also in cichlids, whereas the preproendothelin parts are variable indicating relaxed selective constraints. In the receptors, nonsynonymous substitutions were mainly found in the ligand-binding domains suggesting functional divergence. Gene expression assays with Real-Time PCR indeed reveal that the two studied endothelin pathways are expressed in the cichlid pharyngeal jaw and in the haplochromine egg-spot (among other pigment-cell containing tissues), suggesting their involvement during morphogenesis of naturally and sexually selected traits in cichlid

    In ovo omnia: diversification by duplication in fish and other vertebrates

    Get PDF
    Gene and genome duplications are considered to be the main evolutionary mechanisms contributing to the unrivalled biodiversity of bony fish. New studies of vitellogenin yolk proteins, including a report in BMC Evolutionary Biology, reveal that the genes underlying key evolutionary innovations and adaptations have undergone complex patterns of duplication and functional evolution

    Tracing evolutionary decoupling of oral and pharyngeal jaws in cichlid fishes

    Get PDF
    Evolutionary innovations can facilitate diversification if the novel trait enables a lineage to exploit new niches or by expanding character space. The elaborate pharyngeal jaw apparatus of cichlid fishes is often referred to as an evolutionary "key innovation" that has promoted the spectacular adaptive radiations in these fishes. This goes back to the idea that the structural and functional independence of the oral and pharyngeal jaws for food capturing and food processing, respectively, permitted each jaw type to follow independent evolutionary trajectories. This "evolutionary decoupling" is thought to have facilitated novel trait combinations and, hence, ecological specialization, ultimately allowing more species to coexist in sympatry. Here, we test the hypotheses of evolutionary decoupling of the oral and pharyngeal jaws in the massive adaptive radiation of cichlid fishes in African Lake Tanganyika. Based on phylogenetic comparative analyses of oral jaw morphology and lower pharyngeal jaw shape across most of the ∼240 cichlid species occurring in that lake, we show that the two jaws evolved coupled along the main axes of morphological variation, yet most other components of these trait complexes evolved largely independently over the course of the radiation. Further, we find limited correlations between the two jaws in both overall divergence and evolutionary rates. Moreover, we show that the two jaws were evolutionary decoupled at a late stage of the radiation, suggesting that decoupling contributed to micro-niche partitioning and the associated rapidly increasing trophic diversity during this phase

    TANDEM: integrating automated allele binning into genetics and genomics workflows

    Get PDF
    Summary: Computer programs for the statistical analysis of microsatellite data use allele length variation to infer, e.g. population genetic parameters, to detect quantitative trait loci or selective sweeps. However, observed allele lengths are usually inaccurate and may deviate from the expected periodicity of repeats. The common practice of rounding to the nearest whole number frequently results in miscalls and underestimations of allelic richness. Manual sorting of allele lengths into discrete classes, a process called binning, is tedious and error-prone. Here, we present a new program for the automated binning of microsatellite allele lengths to overcome these problems and to facilitate high-throughput allele binning. Availability: www.evolution.unibas.ch/salzburger/software.htm Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin

    The non-gradual nature of adaptive radiation

    Get PDF
    Adaptive radiation is a major source of biodiversity. Still, many aspects of this evolutionary process remain poorly understood. Our recent integrative examination of the cichlid adaptive radiation in African Lake Tanganyika provides new insights into the process of explosive diversification. The in-depth phylogenetic comparative analysis of nearly all species occurring in that lake permitted us to trace patterns of eco-morphological evolution throughout the phylogenetic history of the radiation and revealed that it occurred in a non-gradual manner, in the form of time-shifted bursts of accelerated evolution. The temporal pattern of divergence along different axes of morphological evolution provides empirical support for a scenario that potentially unifies two popular models of adaptive radiation, the "early burst model" and the "stages model"

    Adaptive sequence evolution in a color gene involved in the formation of the characteristic egg-dummies of male haplochromine cichlid fishes

    Get PDF
    BACKGROUND: The exceptionally diverse species flocks of cichlid fishes in East Africa are prime examples of parallel adaptive radiations. About 80% of East Africa's more than 1 800 endemic cichlid species, and all species of the flocks of Lakes Victoria and Malawi, belong to a particularly rapidly evolving lineage, the haplochromines. One characteristic feature of the haplochromines is their possession of egg-dummies on the males' anal fins. These egg-spots mimic real eggs and play an important role in the mating system of these maternal mouthbrooding fish. RESULTS: Here, we show that the egg-spots of haplochromines are made up of yellow pigment cells, xanthophores, and that a gene coding for a type III receptor tyrosine kinase, colony-stimulating factor 1 receptor a (csf1ra), is expressed in egg-spot tissue. Molecular evolutionary analyses reveal that the extracellular ligand-binding and receptor-interacting domain of csf1ra underwent adaptive sequence evolution in the ancestral lineage of the haplochromines, coinciding with the emergence of egg-dummies. We also find that csf1ra is expressed in the egg-dummies of a distantly related cichlid species, the ectodine cichlid Ophthalmotilapia ventralis, in which markings with similar functions evolved on the pelvic fin in convergence to those of the haplochromines. CONCLUSION: We conclude that modifications of existing signal transduction mechanisms might have evolved in the haplochromine lineage in association with the origination of anal fin egg-dummies. That positive selection has acted during the evolution of a color gene that seems to be involved in the morphogenesis of a sexually selected trait, the egg-dummies, highlights the importance of further investigations of the comparative genomic basis of the phenotypic diversification of cichlid fishes

    Parental investment matters for maternal and offspring immune defense in the mouthbrooding cichlid Astatotilapia burtoni

    Get PDF
    Background: Parental care, while increasing parental fitness through offspring survival, also bears cost to the care-giving parent. Consequentially, trade offs between parental care and other vitally important traits, such as the immune system seem evident. In co-occurring phases of parental care and immunological challenges negative consequences through a resource allocation trade off on both the parental and the offspring conditions can be predicted. While the immune system reflects parental stress conditions, parental immunological investments also boost offspring survival via the transfer of immunological substances (trans-generational immune priming). We investigated this relationship in the mouthbrooding East African cichlid Astotatilapia burtoni. Prior to mating, females were exposed to an immunological activation, while others remained immunologically naïve. Correspondingly, the immunological status of females was either examined directly after reproduction or after mouthbrooding had ceased. Offspring from both groups were exposed to immunological challenges to assess the extent of trans-generational immune priming. As proxy for immune status, cellular immunological activity and gene expression were determined. Results: Both reproducing and mouthbrooding females allocate their resources towards reproduction. While upon reproduction the innate immune system was impeded, mouthbrooding females showed an attenuation of inflammatory components. Juveniles from immune challenged mouthbrooding females showed downregulation of immune and life history candidate genes, implying a limitation of trans-generational plasticity when parents experience stress during the costly reproductive phase. Conclusion: Our results provide evidence that both parental investment via mouthbrooding and the rise of the immunological activity upon an immune challenge are costly traits. If applied simultaneously, not only mothers seem to be impacted in their performance, but also offspring are impeded in their ability to react upon a potentially virulent pathogen exposure

    Disentangling Incomplete Lineage Sorting and Introgression to Refine Species-Tree Estimates for Lake Tanganyika Cichlid Fishes

    Get PDF
    Adaptive radiation is thought to be responsible for the evolution of a great portion of the past and present diversity of life. Instances of adaptive radiation, characterized by the rapid emergence of an array of species as a consequence to their adaptation to distinct ecological niches, are important study systems in evolutionary biology. However, because of the rapid lineage formation in these groups, and occasional gene flow between the participating species, it is often difficult to reconstruct the phylogenetic history of species that underwent an adaptive radiation. In this study, we present a novel approach for species-tree estimation in rapidly diversifying lineages, where introgression is known to occur, and apply it to a multimarker data set containing up to 16 specimens per species for a set of 45 species of East African cichlid fishes (522 individuals in total), with a main focus on the cichlid species flock of Lake Tanganyika. We first identified, using age distributions of most recent common ancestors in individual gene trees, those lineages in our data set that show strong signatures of past introgression. This led us to formulate three hypotheses of introgression between different lineages of Tanganyika cichlids: the ancestor of Boulengerochromini (or of Boulengerochromini and Bathybatini) received genomic material from the derived H-lineage; the common ancestor of Cyprichromini and Perissodini experienced, in turn, introgression from Boulengerochromini and/or Bathybatini; and the Lake Tanganyika Haplochromini and closely related riverine lineages received genetic material from Cyphotilapiini. We then applied the multispecies coalescent model to estimate the species tree of Lake Tanganyika cichlids, but excluded the lineages involved in these introgression events, as the multispecies coalescent model does not incorporate introgression. This resulted in a robust species tree, in which the Lamprologini were placed as sister lineage to the H-lineage (including the Eretmodini), and we identify a series of rapid splitting events at the base of the H-lineage. Divergence ages estimated with the multispecies coalescent model were substantially younger than age estimates based on concatenation, and agree with the geological history of the Great Lakes of East Africa. Finally, we formally tested the three hypotheses of introgression using a likelihood framework, and find strong support for introgression between some of the cichlid tribes of Lake Tanganyika. [Adaptive radiation; Cichlidae; introgression; Lake Tanganyika; species network.]

    Where Am I? Niche constraints due to morphological specialization in two Tanganyikan cichlid fish species

    Get PDF
    Food resource specialization within novel environments is considered a common axis of diversification in adaptive radiations. Feeding specializations are often coupled with striking morphological adaptations and exemplify the relation between morphology and diet (phenotype-environment correlations), as seen in, for example, Darwin finches, Hawaiian spiders, and the cichlid fish radiations in East African lakes. The cichlids' potential to rapidly exploit and occupy a variety of different habitats has previously been attributed to the variability and adaptability of their trophic structures including the pharyngeal jaw apparatus. Here we report a reciprocal transplant experiment designed to explore the adaptability of the trophic structures in highly specialized cichlid fish species. More specifically, we forced two common but ecologically distinct cichlid species from Lake Tanganyika,; Tropheus moorii; (rock-dweller), and; Xenotilapia boulengeri; (sand-dweller), to live on their preferred as well as on an unpreferred habitat (sand and rock, respectively). We measured their overall performance on the different habitat types and explored whether adaptive phenotypic plasticity is involved in adaptation. We found that, while habitat had no effect on the performance of; X. boulengeri; ,; T. moorii; performed significantly better in its preferred habitat. Despite an experimental duration of several months, we did not find a shift in the morphology of the lower pharyngeal jaw bone that would be indicative of adaptive phenotypic plasticity in this trait

    Many genes in fish have species-specific asymmetric rates of molecular evolution

    Get PDF
    BACKGROUND: Gene and genome duplication events increase the amount of genetic material that might then contribute to an increase in the genomic and phenotypic complexity of organisms during evolution. Thus, it has been argued that there is a relationship between gene copy number and morphological complexity and/or species diversity. This hypothesis implies that duplicated genes have subdivided or evolved novel functions compared to their pre-duplication proto-orthologs. Such a functional divergence might be caused by an increase in evolutionary rates in one ortholog, by changes in expression, regulatory evolution, insertion of repetitive elements, or due to positive Darwinian selection in one copy. We studied a set of 2466 genes that were present in Danio rerio, Takifugu rubripes, Tetraodon nigroviridis and Oryzias latipes to test (i) for forces of positive Darwinian selection; (ii) how frequently duplicated genes are retained, and (iii) whether novel gene functions might have evolved. RESULTS: 25% (610) of all investigated genes show significantly smaller or higher genetic distances in the genomes of particular fish species compared to their human ortholog than their orthologs in other fish according to relative rate tests. We identified 49 new paralogous pairs of duplicated genes in fish, in which one of the paralogs is under positive Darwinian selection and shows a significantly higher rate of molecular evolution in one of the four fish species, whereas the other copy apparently did not undergo adaptive changes since it retained the original rate of evolution. Among the genes under positive Darwinian selection, we found a surprisingly high number of ATP binding proteins and transcription factors. CONCLUSION: The significant rate difference suggests that the function of these rate-changed genes might be essential for the respective fish species. We demonstrate that the measurement of positive selection is a powerful tool to identify divergence rates of duplicated genes and that this method has the capacity to identify potentially interesting candidates for adaptive gene evolution
    corecore