545 research outputs found

    DG-RAR for the treatment of symptomatic grade III and grade IV haemorrhoids: a 12-month multi-centre, prospective observational study

    Get PDF
    BACKGROUND: Ultrasound-guided techniques represent a new treatment option in the treatment of haemorrhoids. Doppler-guided haemorrhoidal artery ligation (DG-HAL) proved efficacious in early haemorrhoidal disease, but lacks efficacy for stages III/IV. For these patients, haemorrhoidal artery ligation (HAL) has been combined with a running suture to reduce prolapsing haemorrhoidal tissue (recto-anal repair (RAR)). METHODS: A prospective observational study was conducted in 184 patients with grade III (58 %) or grade IV (42 %) haemorrhoids in seven coloproctological centres. Primary endpoints were the recurrence of symptoms and need of further treatment (medical or surgical). RESULTS: Post-operative complications were seen in 8 % of patients. After a follow-up of 3 months, 91 % of patients were free of symptoms and 91 % of patients were satisfied with the result. After a follow-up of 12 months, 89 % of patients were free of symptoms and 88 % were satisfied with the result. Nineteen per cent of patients received further medical or surgical treatment. CONCLUSIONS: Doppler-guided recto-anal repair (DG-RAR) proves to be an effective treatment option for the treatment of advanced haemorrhoidal disease that shows equal results to other established treatment options

    Synthetic population Catalyst: A micro-simulated population of England with circadian activities

    Get PDF
    The Synthetic Population Catalyst (SPC) is an open-source tool for the simulation of populations. Building on previous efforts, synthetic populations can be created for any area in England, from a small geographical unit to the entire country, and linked to geolocalised daily activities. In contrast to most transport models, the output is focussed on the population itself and the way people socially interact together, rather than on a precise modelling of the volume of transport trips from one area to another. SPC is therefore particularly well suited, for example, to study the spread of a pandemic within a population. Other applications include identifying segregation patterns and potential causes of inequality of opportunity amongst individuals. It is fast, thanks to its Rust codebase. The outputs for each lieutenancy area in England are directly available without having to run the code

    Persistent, depth-intensified mixing during the Western Mediterranean Transition's initial stages

    Get PDF
    Piñeiro, S., González-Pola, C., Fernández-Díaz, J. M., Naveira-Garabato, A. C., Sánchez-Leal, R., Puig, P., et al. (2021). Persistent, depth-intensified mixing during the Western Mediterranean Transition's initial stages. Journal of Geophysical Research: Oceans, 126, e2020JC016535. https://doi.org/10.1029/2020JC016535. © 2020. American Geophysical Union. All Rights Reserved.© 2020. American Geophysical Union. All Rights Reserved. Major deep-convection activity in the northwestern Mediterranean during winter 2005 triggered the formation of a complex anomalous deep-water structure that substantially modified the properties of the Western Mediterranean deep layers. Since then, evolution of this thermohaline structure, the so-called Western Mediterranean Transition (WMT), has been traced through a regularly sampled hydrographic deep station located on the outer continental slope of Minorca Island. A rapid erosion of the WMT's near-bottom thermohaline signal was observed during 2005–2007. The plausible interpretation of this as local bottom-intensified mixing motivates this study. Here, the evolution of the WMT structure through 2005–2007 is reproduced by means of a one-dimensional diffusion model including double-diffusive mixing that allows vertical variation of the background mixing coefficient and includes a source term to represent the lateral advection of deep-water injections from the convection area. Using an optimization algorithm, a best guess for the depth-dependent background mixing coefficient is obtained for the study period. WMT evolution during its initial stages is satisfactorily reproduced using this simple conceptual model, indicating that strong depth-intensified mixing (K ∞ (z) ≈ 22 × 10−4 m2 s−1; z ⪆ 1,400 dbar) is a valid explanation for the observations. Extensive hydrographic and current observations gathered over the continental slope of Minorca during winter 2018, the first deep-convective winter intensively sampled in the region, provide evidence of topographically localized enhanced mixing concurrent with newly formed dense waters flowing along-slope toward the Algerian sub-basin. This transport-related boundary mixing mechanism is suggested to be a plausible source of the water-mass transformations observed during the initial stages of the WMT off Minorca.CTM2014-54374-R. BES-2015-074316.Versión del editor3,17

    Wind-induced changes in the dynamics of fluorescent organic matter in the coastal NW Mediterranean

    Get PDF
    Original research paperMarine biogeochemistry dynamics in coastal marine areas is strongly influenced by episodic events such as rain, intense winds, river discharges and anthropogenic activities. We evaluated in this study the importance of these forcing events on modulating seasonal changes in the marine biogeochemistry of the northwestern coast of the Mediterranean Sea, based on data gathered from a fixed coastal sampling station in the area. A 4-year (2011–2014) monthly sampling at four depths (0.5 m, 20 m, 50 m and 80 m) was performed to examine the time variability of several oceanographic variables: seawater temperature, salinity, inorganic nutrient concentrations (NO3−, PO43 − and SiO2), chlorophyll a (Chl a), dissolved organic carbon (DOC) and fluorescent dissolved organic matter (FDOM). FDOM dynamics was predominantly influenced by upwelling events and mixing processes, driven by strong and characteristic wind episodes. SW wind episodes favored the upwelling of deeper and denser waters into the shallower shelf, providing a surplus of autochthonous humic-like material and inorganic nutrients, whereas northerlies favored the homogenization of the whole shelf water column by cooling and evaporation. These different wind-induced processes (deep water intrusion or mixing), reported along the four sampled years, determined a high interannual environmental variability in comparison with other Mediterranean sampling sites. Graphical abstract Image 1 Download : Download high-res image (344KB)Download : Download full-size imageECOSER (CTM2011-15937-E), DOREMI (CTM2012-342949), SUAVE (CTM2014/ 23456/1) and ANIMA (CTM2015-65720) from the Spanish Ministerio de Economía y Competitividad (MINECO) and the Grup de Recerca Consolidat 2014SGR1179 and 2014SGR1029 financed by the Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR) from the Generalitat de Catalunya; (JAEPre_2011_00923) from the Agencia Estatal Consejo Su perior de Investigaciones Científicas (CSIC) and the project FERMIO (MINECO, CTM2014-57334-JIN) co-financed with FEDER fundsVersión del editor3,25

    Protocols for the field testing

    Get PDF
    The COMMON SENSE project has been designed and planned in order to meet the general and specific scientific and technical objectives mentioned in its Description of Work (page 77). In an overall strategy of the work plan, work packages (11) can be grouped into 3 key phases: (1) RD basis for cost-effective sensor development, (2) Sensor development, sensor web platform and integration, and (3) Field testing. In the first two phases WP1 and WP2 partners have provided a general understanding and integrated basis for a cost effective sensors development. Within the following WPs 4 to 8 the new sensors are created and integrated into different identified platforms. During the third phase 3, characterized by WP9, partners will deploy precompetitive prototypes at chosen platforms (e.g. research vessels, oil platforms, buoys and submerged moorings, ocean racing yachts, drifting buoys). Starting from August 2015 (month 22; task 9.2), these platforms will allow the partnership to test the adaptability and performance of the in-situ sensors and verify if the transmission of data is properly made, correcting deviations. In task 9.1 all stakeholders identified in WP2, and other relevant agents, have been contacted in order to close a coordinated agenda for the field testing phase for each of the platforms. Field testing procedures (WP2) and deployment specificities, defined during sensor development in WPs 4 to 8, are closely studied by all stakeholders involved in field testing activities in order for everyone to know their role, how to proceed and to provide themselves with the necessary material and equipment (e.g. transport of instruments). All this information will provide the basis for designing and coordinating field testing activities. Type and characteristics of the system (vessel or mooring, surface or deep, open sea or coastal area, duration, etc.), used for the field testing activities, are planned comprising the indicators included in the above-mentioned descriptors, taking into account that they must of interest for eutrophication, concentration of contaminants, marine litter and underwater noise. In order to obtain the necessary information, two tables were realized starting from the information acquired for D2.2 delivered in June 2014. One table was created for sensor developers and one for those partners that will test the sensors at sea. The six developers in COMMON SENSE have provided information on the seven sensors: CEFAS and IOPAN for underwater noise; IDRONAUT and LEITAT for microplastics; CSIC for an innovative piro and piezo resistive polymeric temperature and pressure and for heavy metal; DCU for the eutrophication sensor. This information is anyway incomplete because in most cases the novel sensors are still far to be ready and will be developed over the course of COMMON SENSE. So the sensors cannot be clearly designed yet and, consequently, technical characteristics cannot still be perfectly defined. This produces some lag in the acquired information and, consequently, in the planning of their testing on specific platforms that will be solved in the near future. In the table for Testers, partners have provided information on fifteen available platforms. Specific answers have been given on number and type of sensors on each platforms, their availability and technical characteristics, compatibility issues and, very important when new sensors are tested, comparative measurements to be implemented to verify them. Finally IOPAN has described two more platforms, a motorboat not listed in the DoW, but already introduced in D2.2, and their oceanographic buoy in the Gdansk Bay that was previously unavailable. The same availability now is present for the OBSEA Underwater observatory from CSIC, while their Aqualog undulating mooring is still not ready for use. In the following months, new information on sensors and platforms will be provided and the planning of testing activities will improve. Further updates of this report will be therefore necessary in order to individuate the most suitable platforms to test each kind of sensor. Objectives and rationale The objective of deliverable 9.1 is the definition of field testing procedures (WP2), the study of deployment specificities during sensor development work packages (from WP4 to WP8) and the preparation of protocols. This with the participation of all stakeholders involved in field testing activities in order for everyone to know their role, how to proceed and to provide themselves with the necessary material and equipment

    Field testing, validation and optimization report

    Get PDF
    The COMMON SENSE project has been designed and planned in order to meet the general and specific scientific and technical objectives mentioned in its Description of Work (page 77). As the overall strategy, the 11 work packages (WPs) of the work plan were grouped into 3 key phases: (1) RD basis for cost-effective sensor development , (2) Sensor development, sensor web platform and integration, and (3) Field testing. In the first two phases, partners involved in WP1 and WP2 have provided a general understanding and integrated basis for a cost effective sensors development. Within the following WPs 4 to 8 the new sensors were created and integrated into different identified platforms. During the third phase of field testing (WP9), partners have deployed precompetitive prototypes at chosen platforms (e.g. research vessels, oil platforms, buoys and submerged moorings, ocean racing yachts, drifting buoys). Starting from August 2015 (month 22; task 9.2), these platforms have allowed the partnership to test the adaptability and performance of the in-situ sensors and verify if the transmission of data is properly made, correcting deviations. In task 9.1 all stakeholders identified in WP2 have been contacted in order to agree upon a coordinated agenda for the field testing phase for each of the platforms. Field testing procedures (WP2) and deployment specificities, defined during sensor development in WPs 4 to 8, have been closely studied by all stakeholders involved in field testing activities in order for everyone to know their role, how to proceed and to provide themselves with the necessary material and equipment (e.g. transport of instruments). All this information have provided the basis for designing and coordinating field testing activities. Subsequently, the available new sensors have been tested since August 2015 till mid-October of the current year (2016) as part of task 9.2, following the indications defined in D9.1, such as the intercomparison of the new sensors with commercial ones, when possible. The availability of new sensors was quite different in time starting with the first tests in September and October 2015 on noise, nutrient and heavy metals sensors and closing with pCO2 in late September 2016. Sensors are technically fully described in the deliverables of WPs 3 to 8 and are here just mentioned where necessary. For further details, please consider those reports. Objectives and rationale The protocols prepared in D9.1 have been verified during the field testing activities of the innovative sensors on platforms. These can be summarized into 3 categories: (1) Research vessels (regular cruises); (2) Fixed platforms; (3) Ocean racing yachts. An exhaustive analysis of the different data obtained during field testing activities has been carried on in order to set possible optimization actions for prototypes design and performances. The data from each platform have been analyzed to verify limits and optimal installations or possible improvements. Finally a set of possible optimization actions has been defined. Data and observations collected during the course of field testing have been used to iteratively optimize the design and performance of the precompetitive prototypes

    Analysis of relevant technical issues and deficiencies of the existing sensors and related initiatives currently set and working in marine environment. New generation technologies for cost-effective sensors

    Get PDF
    The last decade has seen significant growth in the field of sensor networks, which are currently collecting large amounts of environmental data. This data needs to be collected, processed, stored and made available for analysis and interpretation in a manner which is meaningful and accessible to end users and stakeholders with a range of requirements, including government agencies, environmental agencies, the research community, industry users and the public. The COMMONSENSE project aims to develop and provide cost-effective, multi-functional innovative sensors to perform reliable in-situ measurements in the marine environment. The sensors will be easily usable across several platforms, and will focus on key parameters including eutrophication, heavy metal contaminants, marine litter (microplastics) and underwater noise descriptors of the MSFD. The aims of Tasks 2.1 and 2.2 which comprise the work of this deliverable are: • To obtain a comprehensive understanding and an up-to-date state of the art of existing sensors. • To provide a working basis on “new generation” technologies in order to develop cost-effective sensors suitable for large-scale production. This deliverable will consist of an analysis of state-of-the-art solutions for the different sensors and data platforms related with COMMONSENSE project. An analysis of relevant technical issues and deficiencies of existing sensors and related initiatives currently set and working in marine environment will be performed. Existing solutions will be studied to determine the main limitations to be considered during novel sensor developments in further WP’s. Objectives & Rationale The objectives of deliverable 2.1 are: • To create a solid and robust basis for finding cheaper and innovative ways of gathering data. This is preparatory for the activities in other WPs: for WP4 (Transversal Sensor development and Sensor Integration), for WP(5-8) (Novel Sensors) to develop cost-effective sensors suitable for large-scale production, reducing costs of data collection (compared to commercially available sensors), increasing data access availability for WP9 (Field testing) when the deployment of new sensors will be drawn and then realized
    corecore