19 research outputs found

    Channels and gullies on the continental slope seaward of a cross-shelf trough, Labrador margin, eastern Canada

    Get PDF
    The Labrador Shelf is characterized by several cross-shelf troughs separated by intervening shallower banks. The troughs were probably occupied by fast-flowing ice streams in the Late Pleistocene. Hopedale Saddle trough has a long Quaternary history of till progradation at the shelf edge, and the modern continental slope developed over a major 0.3 Ma shelf-edge failure complex. The upper slope exhibits a series of relatively narrow and deep gullies, whereas the mid-slope contains wider and shallower channels that are locally anastomosing (Fig. 1a). The erosional submarine landforms on the slope are likely to be linked to the delivery of dense sediment-rich meltwater to the shelf edge from a full-glacial ice stream (Piper et al. 2012)

    Opportunities for improving recognition of coastal wetlands in global ecosystem assessment frameworks

    Get PDF
    Vegetated coastal wetlands, including seagrass, saltmarsh and mangroves, are threatened globally, yet the need to avert these losses is poorly recognized in international policy, such as in the Convention on Biological Diversity and the United Nations (UN) Sustainable Development Goals. Identifying the impact of overlooking coastal wetlands in ecosystem assessment frameworks could help prioritize research efforts to fill these gaps. Here, we examine gaps in the recognition of coastal wetlands in globally applicable ecosystem assessments. We address both shortfalls in assessment frameworks when it comes to assessing wetlands, and gaps in data that limit widespread application of assessments. We examine five assessment frameworks that track fisheries, greenhouse gas emissions, ecosystem threats, and ecosystem services. We found that these assessments inform management decisions, but that the functions provided by coastal wetlands are incompletely represented. Most frameworks had sufficient complexity to measure wetland status, but limitations in data meant they were incompletely informed about wetland functions and services. Incomplete representation of coastal wetlands may lead to them being overlooked by research and management. Improving the coverage of coastal wetlands in ecosystem assessments requires improving global scale mapping of wetland trends, developing global-scale indicators of wetland function and synthesis to quantitatively link animal population dynamics to wetland trends. Filling these gaps will help ensure coastal wetland conservation is properly informed to manage them for the outstanding benefits they bring humanity

    On the Reconstruction of Palaeo-Ice Sheets: Recent Advances and Future Challenges

    Get PDF
    Reconstructing the growth and decay of palaeo-ice sheets is critical to understanding mechanisms of global climate change and associated sea-level fluctuations in the past, present and future. The significance of palaeo-ice sheets is further underlined by the broad range of disciplines concerned with reconstructing their behaviour, many of which have undergone a rapid expansion since the 1980s. In particular, there has been a major increase in the size and qualitative diversity of empirical data used to reconstruct and date ice sheets, and major improvements in our ability to simulate their dynamics in numerical ice sheet models. These developments have made it increasingly necessary to forge interdisciplinary links between sub-disciplines and to link numerical modelling with observations and dating of proxy records. The aim of this paper is to evaluate recent developments in the methods used to reconstruct ice sheets and outline some key challenges that remain, with an emphasis on how future work might integrate terrestrial and marine evidence together with numerical modelling. Our focus is on pan-ice sheet reconstructions of the last deglaciation, but regional case studies are used to illustrate methodological achievements, challenges and opportunities. Whilst various disciplines have made important progress in our understanding of ice-sheet dynamics, it is clear that data-model integration remains under-used, and that uncertainties remain poorly quantified in both empirically-based and numerical ice-sheet reconstructions. The representation of past climate will continue to be the largest source of uncertainty for numerical modelling. As such, palaeo-observations are critical to constrain and validate modelling. State-of-the-art numerical models will continue to improve both in model resolution and in the breadth of inclusion of relevant processes, thereby enabling more accurate and more direct comparison with the increasing range of palaeo-observations. Thus, the capability is developing to use all relevant palaeo-records to more strongly constrain deglacial (and to a lesser extent pre-LGM) ice sheet evolution. In working towards that goal, the accurate representation of uncertainties is required for both constraint data and model outputs. Close cooperation between modelling and data-gathering communities is essential to ensure this capability is realised and continues to progress

    An histidine covalent receptor and butenolide complex mediates strigolactone perception

    Get PDF
    Strigolactone plant hormones control plant architecture and are key players in both symbiotic and parasitic interactions. They contain an ABC tricyclic lactone connected to a butenolide group, the D ring. The DWARF14 (D14) strigolactone receptor belongs to the superfamily of α/β-hydrolases, and is known to hydrolyze the bond between the ABC lactone and the D ring. Here we characterized the binding and catalytic functions of RAMOSUS3 (RMS3), the pea (Pisum sativum) ortholog of rice (Oryza sativa) D14 strigolactone receptor. Using new profluorescent probes with strigolactone-like bioactivity, we found that RMS3 acts as a single-turnover enzyme that explains its apparent low enzymatic rate. We demonstrated the formation of a covalent RMS3-D-ring complex, essential for bioactivity, in which the D ring was attached to histidine 247 of the catalytic triad. These results reveal an undescribed mechanism of plant hormone reception in which the receptor performs an irreversible enzymatic reaction to generate its own ligand
    corecore