33 research outputs found

    Identification and validation of novel prostate cancer biomarkers

    Get PDF
    Prostate cancer (PCa) has emerged as the most commonly diagnosed lethal cancer in European men. PCa is a heterogeneous cancer that in the majority of the cases is slow growing: consequently, these patients would not need any medical treatment. Currently, the measurement of prostate-specific antigen (PSA) from blood by immunoassay followed by digital rectal examination and a pathological examination of prostate tissue biopsies are the most widely used methods in the diagnosis of PCa. These methods suffer from a lack of sensitivity and specificity that may cause either missed cancers or overtreatment as a consequence of over-diagnosis. Therefore, more reliable biomarkers are needed for a better discrimination between indolent and potentially aggressive cancers. The aim of this thesis was the identification and validation of novel biomarkers for PCa. The mRNA expression level of 14 genes including AMACR, AR, PCA3, SPINK1, TMPRSS2-ERG, KLK3, ACSM1, CACNA1D, DLX1, LMNB1, PLA2G7, RHOU, SPON2, and TDRD1 was measured by a truly quantitative reverse transcription PCR in different prostate tissue samples from men with and without PCa. For the last eight genes the function of the genes in PCa progression was studied by a specific siRNA knockdown in PC-3 and VCaP cells. The results from radical prostatectomy and cystoprostatectomy samples showed statistically significant overexpression for all the target genes, except for KLK3 in men with PCa compared with men without PCa. Statistically significant difference was also observed in low versus high Gleason grade tumors (for PLA2G7), PSA relapse versus no relapse (for SPON2), and low versus high TNM stages (for CACNA1D and DLX1). Functional studies and siRNA silencing results revealed a cytotoxicity effect for the knock-down of DLX1, PLA2G7, and RHOU, and altered tumor cell invasion for PLA2G7, RHOU, ACSM1, and CACNA1D knock-down in 3D conditions. In addition, effects on tumor cell motility were observed after silencing PLA2G7 and RHOU in 2D monolayer cultures. Altogether, these findings indicate the possibility of utilizing these new markers as diagnostic and prognostic markers, and they may also represent therapeutic targets for PCa.Siirretty Doriast

    Global variation in diabetes diagnosis and prevalence based on fasting glucose and hemoglobin A1c

    Get PDF
    Fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) are both used to diagnose diabetes, but these measurements can identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening, had elevated FPG, HbA1c or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardized proportion of diabetes that was previously undiagnosed and detected in survey screening ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the age-standardized proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c was more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global shortfall in diabetes diagnosis and surveillance

    Global variations in diabetes mellitus based on fasting glucose and haemogloblin A1c

    Get PDF
    Fasting plasma glucose (FPG) and haemoglobin A1c (HbA1c) are both used to diagnose diabetes, but may identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening had elevated FPG, HbA1c, or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardised proportion of diabetes that was previously undiagnosed, and detected in survey screening, ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the agestandardised proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global gap in diabetes diagnosis and surveillance.peer-reviewe

    Production of recombinant keratinase for poultry feather degradation

    No full text
    The keratinase gene (kerA) of Bacillus licheniformis ATCC®53757 was PCR amplified and subsequently cloned into Bacillus megaterium expression vector; pHIS1525.SPlipA and transformed in Bacillus megaterium ATCC®14945. The kerA gene carrying the recombinant plasmid pKERHIS1525.SPlipA was expressed in Bacillus megaterium under xylose inducible promoter, purified using Ni-NTA affinity column chromatography and consequently produced an extracellular keratinase activity of 29 U ml-1 after 18 h of incubation. The recombinant strain was further examined for feather degradation of intact chicken feathers. The chopped chicken feathers were partially degraded by the recombinant strain after 3days and the total macroscopic digestion was ultimately observed after seven days resulting in a yellowish peptide rich fermentation broth

    Production of recombinant keratinase for poultry feather degradation

    No full text
    The keratinase gene (kerA) of Bacillus licheniformis ATCC®53757 was PCR amplified and subsequently cloned into Bacillus megaterium expression vector; pHIS1525.SPlipA and transformed in Bacillus megaterium ATCC®14945. The kerA gene carrying the recombinant plasmid pKERHIS1525.SPlipA was expressed in Bacillus megaterium under xylose inducible promoter, purified using Ni-NTA affinity column chromatography and consequently produced an extracellular keratinase activity of 29 U ml-1 after 18 h of incubation. The recombinant strain was further examined for feather degradation of intact chicken feathers. The chopped chicken feathers were partially degraded by the recombinant strain after 3days and the total macroscopic digestion was ultimately observed after seven days resulting in a yellowish peptide rich fermentation broth

    Challenges, applications and future directions of precision medicine in prostate cancer – the role of organoids and patient-derived xenografts

    No full text
    Objective: To provide a clinically relevant outline of various current precision medicine principles and available evidence on the application and potential for a precision medicine approach in prostate cancer. Methods: Narrative review of the current literature in the field. Conclusion: Precision medicine is the concept of individualising patient management based on specific tumour characteristics and biology, rather than traditional histological subtypes. The overall aim is to personalise management to individual patients, to provide the right cancer treatment, to the right patient, at the right time. While the approach aims to improve clinical outcomes, decrease morbidity and improve survival in men with advanced prostate cancer, its clinical application is in its infancy. It does however show great promise in this and other cancers, and will continue to be an area of active research and clinical investigation.</p

    Lanthanide chelate complementation and hydrolysis enhanced luminescent chelate in real-time reverse transcription polymerase chain reaction assays for KLK3 transcripts

    No full text
    The requirement for high-performance reporter probes in real-time detection of polymerase chain reaction (PCR) has led to the use of time-resolved fluorometry of lanthanide chelates. The aim of this study was to investigate the applicability of the principle of lanthanide chelate complementation (LCC) in comparison with a method based on hydrolysis enhancement and quenching of intact probes. A real-time reverse transcription (RT) PCR assay for kallikrein-related peptidase 3 (KLK3, model analyte) was developed by using the LCC detection method. Both detection methods were tested with a standard series of purified PCR products, 20 prostatic tissues, 20 healthy and prostate cancer patient blood samples, and female blood samples spiked with LNCaP cells. The same limit of detection was obtained with both methods, and two cycles earlier detection with the LCC method was observed. KLK3 messenger RNA (mRNA) was detected in all tissue samples and in 1 of 20 blood samples identically with both methods. The background was 30 times lower, and the signal-to-background (S/B) ratio was 3 times higher, when compared with the reference method. Use of the new reporter method provided similar sensitivity and specificity as the reference method. The lower background, the improved S/B ratio, and the possibility of melting curve analysis and single nucleotide polymorphism (SNP) detection could be advantages for this new reporter probe. © 2013 Elsevier Inc. All rights reserved

    Global expression of AMACR transcripts predicts risk for prostate cancer - a systematic comparison of AMACR protein and mRNA expression in cancerous and noncancerous prostate.

    No full text
    The high false negative rates for initial prostate biopsies refer a large number of the men for repeat biopsies each year. Therefore, biomarkers associated with high risk of the presence of malignancy in histologically benign biopsies could provide a tool to discriminate the patients who need repeat biopsy or intensive follow-up from those who do not. Here we examined the diagnostic applicability of alpha-methylacyl CoA racemase (AMACR) and androgen receptor (AR) mRNA expression and AMACR protein levels in benign and cancerous prostatic tissue

    Introduction of Androgen Receptor Targeting shRNA Inhibits Tumor Growth in Patient-Derived Prostate Cancer Xenografts

    No full text
    Patient-derived xenograft (PDX) models have been established as important preclinical cancer models, overcoming some of the limitations associated with the use of cancer cell lines. The utility of prostate cancer PDX models has been limited by an inability to genetically manipulate them in vivo and difficulties sustaining PDX-derived cancer cells in culture. Viable, short-term propagation of PDX models would allow in vitro transfection with traceable reporters or manipulation of gene expression relevant to different studies within the prostate cancer field. Here, we report an organoid culture system that supports the growth of prostate cancer PDX cells in vitro and permits genetic manipulation, substantially increasing the scope to use PDXs to study the pathobiology of prostate cancer and define potential therapeutic targets. We have established a short-term PDX-derived in vitro cell culture system which enables genetic manipulation of prostate cancer PDXs LuCaP35 and BM18. Genetically manipulated cells could be re-established as viable xenografts when re-implanted subcutaneously in immunocompromised mice and were able to be serially passaged. Tumor growth of the androgen-dependent LuCaP35 PDX was significantly inhibited following depletion of the androgen receptor (AR) in vivo. Taken together, this system provides a method to generate novel preclinical models to assess the impact of controlled genetic perturbations and allows for targeting specific genes of interest in the complex biological setting of solid tumors
    corecore