20 research outputs found

    Population analysis of the GLB1 gene in South Brazil

    Get PDF
    Infantile GM1 gangliosidosis is caused by the absence or reduction of lysosomal beta-galactosidase activity. Studies conducted in Brazil have indicated that it is one of the most frequent lysosomal storage disorders in the southern part of the country. To assess the incidence of this disorder, 390 blood donors were tested for the presence of two common mutations (1622–1627insG and R59H) in the GLB1 gene. Another group, consisting of 26 GM1 patients, and the blood donors were tested for the presence of two polymorphisms (R521C and S532G), in an attempt to elucidate whether there is a founder effect. The frequencies of the R59H and 1622–1627insG mutations among the GM1 patients studied were 19.2% and 38.5%, respectively. The frequency of polymorphism S532G was 16.7%, whereas R521C was not found in the patients. The overall frequency of either R59H or 1622–1627insG was 57.7% of the disease-causing alleles. This epidemiological study suggested a carrier frequency of 1:58. Seven different haplotypes were found. The 1622–1627insG mutation was not found to be linked to any polymorphism, whereas linkage disequilibrium was found for haplotype 2 (R59H, S532G) (p < 0.001). These data confirm the high incidence of GM1 gangliosidosis and the high frequency of two common mutations in southern Brazil

    Biogeography of Amazonian fishes: deconstructing river basins as biogeographic units

    Full text link

    Lack of a Functioning P2X7 Receptor Leads to Increased Susceptibility to Toxoplasmic Ileitis

    Get PDF
    BackgroundOral infection of C57BL/6J mice with the protozoan parasite Toxoplasma gondii leads to a lethal inflammatory ileitis.Principal findingsMice lacking the purinergic receptor P2X7R are acutely susceptible to toxoplasmic ileitis, losing significantly more weight than C57BL/6J mice and exhibiting much greater intestinal inflammatory pathology in response to infection with only 10 cysts of T. gondii. This susceptibility is not dependent on the ability of P2X7R-deficient mice to control the parasite, which they accomplish just as efficiently as C57BL/6J mice. Rather, susceptibility is associated with elevated ileal concentrations of pro-inflammatory cytokines, reactive nitrogen intermediates and altered regulation of elements of NFÎșB activation in P2X7R-deficient mice.ConclusionsOur data support the thesis that P2X7R, a well-documented activator of pro-inflammatory cytokine production, also plays an important role in the regulation of intestinal inflammation
    corecore