239 research outputs found

    An irradiated brown-dwarf companion to an accreting white dwarf

    Get PDF
    Interacting compact binary systems provide a natural laboratory in which to study irradiated substellar objects. As the mass-losing secondary (donor) in these systems makes a transition from the stellar to the substellar regime, it is also irradiated by the primary (compact accretor)1, 2. The internal and external energy fluxes are both expected to be comparable in these objects, providing access to an unexplored irradiation regime. The atmospheric properties of donors are largely unknown3, but could be modified by the irradiation. To constrain models of donor atmospheres, it is necessary to obtain accurate observational estimates of their physical properties (masses, radii, temperatures and albedos). Here we report the spectroscopic detection and characterization of an irradiated substellar donor in an accreting white-dwarf binary system. Our near-infrared observations allow us to determine a model-independent mass estimate for the donor of 0.055 ± 0.008 solar masses and an average spectral type of L1 ± 1, supporting both theoretical predictions and model-dependent observational constraints that suggest that the donor is a brown dwarf. Our time-resolved data also allow us to estimate the average irradiation-induced temperature difference between the dayside and nightside of the substellar donor (57 kelvin) and the maximum difference between the hottest and coolest parts of its surface (200 kelvin). The observations are well described by a simple geometric reprocessing model with a bolometric (Bond) albedo of less than 0.54 at the 2Οƒ confidence level, consistent with high reprocessing efficiency, but poor lateral heat redistribution in the atmosphere of the brown-dwarf donor4, 5. These results add to our knowledge of binary evolution, in that the donor has survived the transition from the stellar to the substellar regime, and of substellar atmospheres, in that we have been able to test a regime in which the irradiation and the internal energy of a brown dwarf are comparable

    Genetic analysis of male reproductive success in relation to density in the zebrafish, Danio rerio

    Get PDF
    BACKGROUND: We used behavioural and genetic data to investigate the effects of density on male reproductive success in the zebrafish, Danio rerio. Based on previous measurements of aggression and courtship behaviour by territorial males, we predicted that they would sire more offspring than non-territorial males. RESULTS: Microsatellite analysis of paternity showed that at low densities territorial males had higher reproductive success than non-territorial males. However, at high density territorial males were no more successful than non-territorials and the sex difference in the opportunity for sexual selection, based on the parameter I(mates), was low. CONCLUSION: Male zebrafish exhibit two distinct mating tactics; territoriality and active pursuit of females. Male reproductive success is density dependent and the opportunity for sexual selection appears to be weak in this species

    Persistent export of 231Pa from the deep central Arctic Ocean over the past 35,000 years

    Get PDF
    The Arctic Ocean has an important role in Earth’s climate, both through surface processes such as sea-ice formation and transport, and through the production and export of waters at depth that contribute to the global thermohaline circulation. Deciphering the deep Arctic Ocean’s palaeo-oceanographic history is a crucial part of understanding its role in climatic change. Here we show that sedimentary ratios of the radionuclides thorium-230 (230Th) and protactinium-231 (231Pa), which are produced in sea water and removed by particle scavenging on timescales of decades to centuries, respectively, record consistent evidence for the export of 231Pa from the deep Arctic and may indicate continuous deep-water exchange between the Arctic and Atlantic oceans throughout the past 35,000 years. Seven well-dated box-core records provide a comprehensive overview of 231Pa and 230Th burial in Arctic sediments during glacial, deglacial and interglacial conditions. Sedimentary 231Pa/230Th ratios decrease nearly linearly with increasing water depth above the core sites, indicating efficient particle scavenging in the upper water column and greater influence of removal by lateral transport at depth. Although the measured 230Th burial is in balance with its production in Arctic sea water, integrated depth profiles for all time intervals reveal a deficit in 231Pa burial that can be balanced only by lateral export in the water column. Because no enhanced sink for 231Pa has yet been found in the Arctic, our records suggest that deep-water exchange through the Fram strait may export 231Pa. Such export may have continued for the past 35,000 years, suggesting a century-scale replacement time for deep waters in the Arctic Ocean since the most recent glaciation and a persistent contribution of Arctic waters to the global ocean circulation

    Molecular characterization of the VP1, VP2, VP4, VP6, NSP1 and NSP2 genes of bovine group B rotaviruses: identification of a novel VP4 genotype

    Get PDF
    Studies on bovine group B rotaviruses (GBRs) are limited. To date, only the VP6 gene of a single bovine GBR strain and the VP7 and NSP5 genes of a few bovine GBR strains have been sequenced and analyzed. In the present study, using a single-primer amplification method, we have determined the full-length nucleotide sequences of the VP1, VP2, VP4, VP6, NSP1 and NSP2 genes of three bovine GBR strains from eastern India. In all six of these genes, the bovine GBR strains shared high genetic relatedness among themselves but exhibited high genetic diversity with cognate genes of human, murine and ovine GBRs. Interestingly, as with group A rotaviruses, the bovine GBR VP1, VP2, VP6 and NSP2 genes appeared to be more conserved than the VP4 and NSP1 genes among strains of different species. The present study provides important insights into the genetic makeup and diversity of bovine GBRs, and also identifies a novel GBR VP4 genotype

    Optogenetic Manipulation of Cerebellar Purkinje Cell Activity In Vivo

    Get PDF
    Purkinje cells (PCs) are the sole output neurons of the cerebellar cortex. Although their anatomical connections and physiological response properties have been extensively studied, the causal role of their activity in behavioral, cognitive and autonomic functions is still unclear because PC activity cannot be selectively controlled. Here we developed a novel technique using optogenetics for selective and rapidly reversible manipulation of PC activity in vivo. We injected into rat cerebellar cortex lentiviruses expressing either the light-activated cationic channel channelrhodopsin-2 (ChR2) or light-driven chloride pump halorhodopsin (eNpHR) under the control of the PC-specific L7 promoter. Transgene expression was observed in most PCs (ChR2, 92.6%; eNpHR, 95.3%), as determined by immunohistochemical analysis. In vivo electrophysiological recordings showed that all light-responsive PCs in ChR2-transduced rats increased frequency of simple spike in response to blue laser illumination. Similarly, most light-responsive PCs (93.8%) in eNpHR-transduced rats decreased frequency of simple spike in response to orange laser illumination. We then applied these techniques to characterize the roles of rat cerebellar uvula, one of the cardiovascular regulatory regions in the cerebellum, in resting blood pressure (BP) regulation in anesthetized rats. ChR2-mediated photostimulation and eNpHR-mediated photoinhibition of the uvula had opposite effects on resting BP, inducing depressor and pressor responses, respectively. In contrast, manipulation of PC activity within the neighboring lobule VIII had no effect on BP. Blue and orange laser illumination onto PBS-injected lobule IX didn't affect BP, indicating the observed effects on BP were actually due to PC activation and inhibition. These results clearly demonstrate that the optogenetic method we developed here will provide a powerful way to elucidate a causal relationship between local PC activity and functions of the cerebellum

    Matrix Rigidity Induces Osteolytic Gene Expression of Metastatic Breast Cancer Cells

    Get PDF
    Nearly 70% of breast cancer patients with advanced disease will develop bone metastases. Once established in bone, tumor cells produce factors that cause changes in normal bone remodeling, such as parathyroid hormone-related protein (PTHrP). While enhanced expression of PTHrP is known to stimulate osteoclasts to resorb bone, the environmental factors driving tumor cells to express PTHrP in the early stages of development of metastatic bone disease are unknown. In this study, we have shown that tumor cells known to metastasize to bone respond to 2D substrates with rigidities comparable to that of the bone microenvironment by increasing expression and production of PTHrP. The cellular response is regulated by Rho-dependent actomyosin contractility mediated by TGF-ß signaling. Inhibition of Rho-associated kinase (ROCK) using both pharmacological and genetic approaches decreased PTHrP expression. Furthermore, cells expressing a dominant negative form of the TGF-ß receptor did not respond to substrate rigidity, and inhibition of ROCK decreased PTHrP expression induced by exogenous TGF-ß. These observations suggest a role for the differential rigidity of the mineralized bone microenvironment in early stages of tumor-induced osteolysis, which is especially important in metastatic cancer since many cancers (such as those of the breast and lung) preferentially metastasize to bone

    The Microbiota Mediates Pathogen Clearance from the Gut Lumen after Non-Typhoidal Salmonella Diarrhea

    Get PDF
    Many enteropathogenic bacteria target the mammalian gut. The mechanisms protecting the host from infection are poorly understood. We have studied the protective functions of secretory antibodies (sIgA) and the microbiota, using a mouse model for S. typhimurium diarrhea. This pathogen is a common cause of diarrhea in humans world-wide. S. typhimurium (S. tmatt, sseD) causes a self-limiting gut infection in streptomycin-treated mice. After 40 days, all animals had overcome the disease, developed a sIgA response, and most had cleared the pathogen from the gut lumen. sIgA limited pathogen access to the mucosal surface and protected from gut inflammation in challenge infections. This protection was O-antigen specific, as demonstrated with pathogens lacking the S. typhimurium O-antigen (wbaP, S. enteritidis) and sIgA-deficient mice (TCRΞ²βˆ’/βˆ’Ξ΄βˆ’/βˆ’, JHβˆ’/βˆ’, IgAβˆ’/βˆ’, pIgRβˆ’/βˆ’). Surprisingly, sIgA-deficiency did not affect the kinetics of pathogen clearance from the gut lumen. Instead, this was mediated by the microbiota. This was confirmed using β€˜L-mice’ which harbor a low complexity gut flora, lack colonization resistance and develop a normal sIgA response, but fail to clear S. tmatt from the gut lumen. In these mice, pathogen clearance was achieved by transferring a normal complex microbiota. Thus, besides colonization resistance (β€Š=β€Špathogen blockage by an intact microbiota), the microbiota mediates a second, novel protective function, i.e. pathogen clearance. Here, the normal microbiota re-grows from a state of depletion and disturbed composition and gradually clears even very high pathogen loads from the gut lumen, a site inaccessible to most β€œclassical” immune effector mechanisms. In conclusion, sIgA and microbiota serve complementary protective functions. The microbiota confers colonization resistance and mediates pathogen clearance in primary infections, while sIgA protects from disease if the host re-encounters the same pathogen. This has implications for curing S. typhimurium diarrhea and for preventing transmission

    Th17 Cytokines and the Gut Mucosal Barrier

    Get PDF
    Local immune responses serve to contain infections by pathogens to the gut while preventing pathogen dissemination to systemic sites. Several subsets of T cells in the gut (T-helper 17 cells, Ξ³Ξ΄ T cells, natural killer (NK), and NK-T cells) contribute to the mucosal response to pathogens by secreting a subset of cytokines including interleukin (IL)-17A, IL-17F, IL-22, and IL-26. These cytokines induce the secretion of chemokines and antimicrobial proteins, thereby orchestrating the mucosal barrier against gastrointestinal pathogens. While the mucosal barrier prevents bacterial dissemination from the gut, it also promotes colonization by pathogens that are resistant to some of the inducible antimicrobial responses. In this review, we describe the contribution of Th17 cytokines to the gut mucosal barrier during bacterial infections
    • …
    corecore