566 research outputs found

    Supersymmetric AdS_4 black holes and attractors

    Full text link
    Using the general recipe given in arXiv:0804.0009, where all timelike supersymmetric solutions of N=2, D=4 gauged supergravity coupled to abelian vector multiplets were classified, we construct the first examples of genuine supersymmetric black holes in AdS_4 with nonconstant scalar fields. This is done for various choices of the prepotential, amongst others for the STU model. These solutions permit to study the BPS attractor flow in AdS. We also determine the most general supersymmetric static near-horizon geometry and obtain the attractor equations in gauged supergravity. As a general feature we find the presence of flat directions in the black hole potential, i.e., generically the values of the moduli on the horizon are not completely specified by the charges. For one of the considered prepotentials, the resulting moduli space is determined explicitely. Still, in all cases, we find that the black hole entropy depends only on the charges, in agreement with the attractor mechanism.Comment: 25 pages, uses JHEP3.cl

    Speed has an effect on multiple-object tracking independently of the number of close encounters between targets and distractors

    Get PDF
    Multiple-object tracking (MOT) studies have shown that tracking ability declines as object speed increases. However, this might be attributed solely to the increased number of times that target and distractor objects usually pass close to each other (“close encounters”) when speed is increased, resulting in more target–distractor confusions. The present study investigates whether speed itself affects MOT ability by using displays in which the number of close encounters is held constant across speeds. Observers viewed several pairs of disks, and each pair rotated about the pair’s midpoint and, also, about the center of the display at varying speeds. Results showed that even with the number of close encounters held constant across speeds, increased speed impairs tracking performance, and the effect of speed is greater when the number of targets to be tracked is large. Moreover, neither the effect of number of distractors nor the effect of target–distractor distance was dependent on speed, when speed was isolated from the typical concomitant increase in close encounters. These results imply that increased speed does not impair tracking solely by increasing close encounters. Rather, they support the view that speed affects MOT capacity by requiring more attentional resources to track at higher speeds

    Nernst branes in gauged supergravity

    Full text link
    We study static black brane solutions in the context of N = 2 U(1) gauged supergravity in four dimensions. Using the formalism of first-order flow equations, we construct novel extremal black brane solutions including examples of Nernst branes, i.e. extremal black brane solutions with vanishing entropy density. We also discuss a class of non-extremal generalizations which is captured by the first-order formalism.Comment: 44 pages, 3 figures, v2: added appendix B and references, minor typographic changes, v3: added some clarifying remarks, version published in JHE

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel.In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime: we compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a black hole and describe the metric fluctuations near the event horizon of an evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews in Relativity gr-qc/0307032 ; it includes new sections on the Validity of Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric Fluctuations of an Evaporating Black Hol

    A meta-analytic review of stand-alone interventions to improve body image

    Get PDF
    Objective Numerous stand-alone interventions to improve body image have been developed. The present review used meta-analysis to estimate the effectiveness of such interventions, and to identify the specific change techniques that lead to improvement in body image. Methods The inclusion criteria were that (a) the intervention was stand-alone (i.e., solely focused on improving body image), (b) a control group was used, (c) participants were randomly assigned to conditions, and (d) at least one pretest and one posttest measure of body image was taken. Effect sizes were meta-analysed and moderator analyses were conducted. A taxonomy of 48 change techniques used in interventions targeted at body image was developed; all interventions were coded using this taxonomy. Results The literature search identified 62 tests of interventions (N = 3,846). Interventions produced a small-to-medium improvement in body image (d+ = 0.38), a small-to-medium reduction in beauty ideal internalisation (d+ = -0.37), and a large reduction in social comparison tendencies (d+ = -0.72). However, the effect size for body image was inflated by bias both within and across studies, and was reliable but of small magnitude once corrections for bias were applied. Effect sizes for the other outcomes were no longer reliable once corrections for bias were applied. Several features of the sample, intervention, and methodology moderated intervention effects. Twelve change techniques were associated with improvements in body image, and three techniques were contra-indicated. Conclusions The findings show that interventions engender only small improvements in body image, and underline the need for large-scale, high-quality trials in this area. The review identifies effective techniques that could be deployed in future interventions

    Holographic Vitrification

    Get PDF
    We establish the existence of stable and metastable stationary black hole bound states at finite temperature and chemical potentials in global and planar four-dimensional asymptotically anti-de Sitter space. We determine a number of features of their holographic duals and argue they represent structural glasses. We map out their thermodynamic landscape in the probe approximation, and show their relaxation dynamics exhibits logarithmic aging, with aging rates determined by the distribution of barriers.Comment: 100 pages, 25 figure

    Hierarchical colour image segmentation by leveraging RGB channels independently

    Get PDF
    In this paper, we introduce a hierarchical colour image segmentation based on cuboid partitioning using simple statistical features of the pixel intensities in the RGB channels. Estimating the difference between any two colours is a challenging task. As most of the colour models are not perceptually uniform, investigation of an alternative strategy is highly demanding. To address this issue, for our proposed technique, we present a new concept for colour distance measure based on the inconsistency of pixel intensities of an image which is more compliant to human perception. Constructing a reliable set of superpixels from an image is fundamental for further merging. As cuboid partitioning is a superior candidate to produce superpixels, we use the agglomerative merging to yield the final segmentation results exploiting the outcome of our proposed cuboid partitioning. The proposed cuboid segmentation based algorithm significantly outperforms not only the quadtree-based segmentation but also existing state-of-the-art segmentation algorithms in terms of quality of segmentation for the benchmark datasets used in image segmentation. © 2019, Springer Nature Switzerland AG
    corecore