7 research outputs found

    A Tale of Two Oxidation States: Bacterial Colonization of Arsenic-Rich Environments

    Get PDF
    Microbial biotransformations have a major impact on contamination by toxic elements, which threatens public health in developing and industrial countries. Finding a means of preserving natural environments—including ground and surface waters—from arsenic constitutes a major challenge facing modern society. Although this metalloid is ubiquitous on Earth, thus far no bacterium thriving in arsenic-contaminated environments has been fully characterized. In-depth exploration of the genome of the ÎČ-proteobacterium Herminiimonas arsenicoxydans with regard to physiology, genetics, and proteomics, revealed that it possesses heretofore unsuspected mechanisms for coping with arsenic. Aside from multiple biochemical processes such as arsenic oxidation, reduction, and efflux, H. arsenicoxydans also exhibits positive chemotaxis and motility towards arsenic and metalloid scavenging by exopolysaccharides. These observations demonstrate the existence of a novel strategy to efficiently colonize arsenic-rich environments, which extends beyond oxidoreduction reactions. Such a microbial mechanism of detoxification, which is possibly exploitable for bioremediation applications of contaminated sites, may have played a crucial role in the occupation of ancient ecological niches on earth

    Arsenic oxidation of Cenibacterium arsenoxidans : Potential application in bioremediation of arsenic contaminated water

    No full text
    Arsenic is a naturally occurring metalloid present in many organic and inorganic compounds. The most abundant arsenic species are the inorganic As[III] and As[V]. The prolonged exposure (occupational or natural) of humans to nonlethal arsenic doses causes chronic health effects, but in long time period usually causes death. Therefore, different chemical technologies were developed for arsenic decontamination of water. Most of them have two stages – the oxidation of As[III] into As[V] and the subsequent immobilization of As[V]. The main disadvantage of these technologies is the use of strong chemical oxidants, which causes a secondary pollution of the environment. The replacement of the chemical oxidation step by a biological one has potential for development, mainly due to the lack of secondary pollution and the low impact on the environment. We focused our interest on the studies of an arsenic-oxidizing ÎČ-Proteobacterium, recently named Cenibacterium arsenoxidans, which possess high arsenic –oxidation capacity. These studies are the preliminary step in order to develop a microbial oxidation step for an arsenic contaminated water cleanup technology. We investigated the optimal growth conditions of the strain, and new nutrient media were tested and developed. In addition to the studies of the As[III] oxidation from free cells, the As[III] oxidation from immobilized C. arsenoxidans cells were studied. Thereafter, a tracking of the growth of C. arsenoxidans gfp-tagged cells in an “open” system was performed, which aimed to clarify the colonization and survival ability of the strain in such system, where randomly introduced microorganisms were presented. Also a method for rapid screening of arsenic-transforming bacteria was developed. L’arsenic est un mĂ©talloĂŻde naturellement prĂ©sent dans diffĂ©rents environnements. Les formes inorganiques, l’arsĂ©nite (As[III]) et l’arsĂ©niate (As[V]) sont les plus abondantes. Ce sont aussi les formes les plus toxiques. L’ingestion d’arsenic, en particulier via l’absorption d’eau contaminĂ©e, est Ă  l’origine de graves problĂšmes de santĂ© publique dans des nombreuses parties du monde. C’est pourquoi, diffĂ©rentes mĂ©thodes de bio-rĂ©habilitation ont Ă©tĂ© mises au point. La plupart de ces mĂ©thodes utilisent deux Ă©tapes : une oxydation chimique de As[III] en As[V], suivie de l’immobilisation de l’As[V]. L’utilisation d’oxydants puissants est Ă  l’origine de pollutions secondaires. L’oxydation par voie microbiologique de l’As[III] permet de proposer une mĂ©thode alternative intĂ©ressante puisque non polluante. Notre travail s’est focalisĂ© sur l’analyse d’une ÎČ-protĂ©obactĂ©rie, Cenibacterium arsenoxidans, capable d’oxyder efficacement l’As[III] en As[V]. Nos Ă©tudes constituent des Ă©tapes prĂ©liminaires pour le dĂ©veloppement de mĂ©thodologies destinĂ©es au traitement d’eaux contaminĂ©es par l’arsenic. Nous avons Ă©tabli les conditions d’obtention de la biomasse d’intĂ©rĂȘt en testant de nouveaux supports de culture, basĂ© sur la valorisation de dĂ©chets d’industries agroalimentaires. L’oxydation d’As[III] par C. arsenoxidans a Ă©tĂ© testĂ©e avec des cellules en suspension ainsi qu’avec des cellules immobilisĂ©es dans des billes d’alginate. En utilisant des cellules marquĂ©es avec la protĂ©ine GFP, nous avons Ă©tudiĂ© la survie et l’implantation de C. arsenoxidans en milieu non stĂ©rile. Enfin, dans le but d’isoler d’autres bactĂ©ries utilisables dans les processus de traitements de milieux contaminĂ©s par l’arsenic, nous avons dĂ©veloppĂ© une mĂ©thode simple et rapide pour le criblage de bactĂ©ries capables de rĂ©aliser l’oxydation d’As[III]

    Life based on phosphite: a genome-guided analysis of Desulfotignum phosphitoxidans

    No full text
    The Delta-Proteobacterium Desulfotignum phosphitoxidans is a type strain of the genus Desulfotignum, which comprises to date only three species together with D. balticum and D. toluenicum. D. phosphitoxidans oxidizes phosphite to phosphate as its only source of electrons, with either sulfate or CO2 as electron acceptor to gain its metabolic energy, which is of exclusive interest. Sequencing of the genome of this bacterium was undertaken to elucidate the genomic basis of this so far unique type of energy metabolism
    corecore