75 research outputs found

    Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma

    Get PDF
    BACKGROUND: Multiple myeloma is characterized by the presence of transformed neoplastic plasma cells in the bone marrow and is generally considered to be an incurable disease. Successful treatments will likely require multi-faceted approaches incorporating conventional drug therapies, immunotherapy and other novel treatments. Our lab previously showed that a combination of transient lymphodepletion (sublethal whole body irradiation) and PD-1/PD-L1 blockade generated anti-myeloma T cell reactivity capable of eliminating established disease. We hypothesized that blocking a combination of checkpoint receptors in the context of low-dose, lymphodepleting whole body radiation would boost anti-tumor immunity. METHODS: To test our central hypothesis, we utilized a 5T33 murine multiple myeloma model. Myeloma-bearing mice were treated with a low dose of whole body irradiation and combinations of blocking antibodies to PD-L1, LAG-3, TIM-3, CD48 (the ligand for 2B4) and CTLA4. RESULTS: Temporal phenotypic analysis of bone marrow from myeloma-bearing mice demonstrated that elevated percentages of PD-1, 2B4, LAG-3 and TIM-3 proteins were expressed on T cells. When PD-L1 blockade was combined with blocking antibodies to LAG-3, TIM-3 or CTLA4, synergistic or additive increases in survival were observed (survival rates improved from ~30% to >80%). The increased survival rates correlated with increased frequencies of tumor-reactive CD8 and CD4 T cells. When stimulated in vitro with myeloma cells, CD8 T cells from treated mice produced elevated levels proinflammatory cytokines. Cytokines were spontaneously released from CD4 T cells isolated from mice treated with PD-L1 plus CTLA4 blocking antibodies. CONCLUSIONS: These data indicate that blocking PD-1/PD-L1 interactions in conjunction with other immune checkpoint proteins provides synergistic anti-tumor efficacy following lymphodepletive doses of whole body irradiation. This strategy is a promising combination strategy for myeloma and other hematologic malignancies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40425-014-0043-z) contains supplementary material, which is available to authorized users

    NK cells and cancer: you can teach innate cells new tricks

    Full text link
    Natural killer (NK) cells are the prototype innate lymphoid cells endowed with potent cytolytic function that provide host defence against microbial infection and tumours. Here, we review evidence for the role of NK cells in immune surveillance against cancer and highlight new therapeutic approaches for targeting NK cells in the treatment of cancer

    TIM3(+)FOXP3(+) regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer

    Get PDF
    Fulltext embargoed for: 6 months post date of publicationT-cell immunoglobulin mucin 3 (TIM3) is an inhibitory molecule that has emerged as a key regulator of dysfunctional or exhausted CD8+ T cells arising in chronic diseases such as cancer. In addition to exhausted CD8+ T cells, highly suppressive regulatory T cells (Tregs) represent a significant barrier against the induction of antitumor immunity. We have found that the majority of intratumoral FOXP3+ Tregs express TIM3. TIM3+ Tregs co-express PD-1, are highly suppressive and comprise a specialized subset of tissue Tregs that are rarely observed in the peripheral tissues or blood of tumor-bearing mice. The co-blockade of the TIM3 and PD-1 signaling pathways in vivo results in the downregulation of molecules associated with TIM3+ Treg suppressor functions. This suggests that the potent clinical efficacy of co-blocking TIM3 and PD-1 signal transduction cascades likely stems from the reversal of T-cell exhaustion combined with the inhibition of regulatory T-cell function in tumor tissues. Interestingly, we find that TIM3+ Tregs accumulate in the tumor tissue prior to the appearance of exhausted CD8+ T cells, and that the depletion of Tregs at this stage interferes with the development of the exhausted phenotype by CD8+ T cells. Collectively, our data indicate that TIM3 marks highly suppressive tissue-resident Tregs that play an important role in shaping the antitumor immune response in situ, increasing the value of TIM3-targeting therapeutic strategies against cancer

    Cancer immunoediting by the innate immune system in the absence of adaptive immunity

    Get PDF
    Cancer immunoediting is the process whereby immune cells protect against cancer formation by sculpting the immunogenicity of developing tumors. Although the full process depends on innate and adaptive immunity, it remains unclear whether innate immunity alone is capable of immunoediting. To determine whether the innate immune system can edit tumor cells in the absence of adaptive immunity, we compared the incidence and immunogenicity of 3'methylcholanthrene-induced sarcomas in syngeneic wild-type, RAG2(-/-), and RAG2(-/-)x γc(-/-) mice. We found that innate immune cells could manifest cancer immunoediting activity in the absence of adaptive immunity. This activity required natural killer (NK) cells and interferon γ (IFN-γ), which mediated the induction of M1 macrophages. M1 macrophages could be elicited by administration of CD40 agonists, thereby restoring editing activity in RAG2(-/-)x γc(-/-) mice. Our results suggest that in the absence of adaptive immunity, NK cell production of IFN-γ induces M1 macrophages, which act as important effectors during cancer immunoediting

    Host immunity contributes to the anti-melanoma activity of BRAF inhibitors

    No full text
    Fulltext embargoed for: 6 months post date of publicationThe BRAF mutant, BRAF(V600E), is expressed in nearly half of melanomas, and oral BRAF inhibitors induce substantial tumor regression in patients with BRAF(V600E) metastatic melanoma. The inhibitors are believed to work primarily by inhibiting BRAF(V600E)-induced oncogenic MAPK signaling; however, some patients treated with BRAF inhibitors exhibit increased tumor immune infiltration, suggesting that a combination of BRAF inhibitors and immunotherapy may be beneficial. We used two relatively resistant variants of Braf(V600E)-driven mouse melanoma (SM1 and SM1WT1) and melanoma-prone mice to determine the role of host immunity in type I BRAF inhibitor PLX4720 antitumor activity. We found that PLX4720 treatment downregulated tumor Ccl2 gene expression and decreased tumor CCL2 expression in both Braf(V600E) mouse melanoma transplants and in de novo melanomas in a manner that was coincident with reduced tumor growth. While PLX4720 did not directly increase tumor immunogenicity, analysis of SM1 tumor-infiltrating leukocytes in PLX4720-treated mice demonstrated a robust increase in CD8(+) T/FoxP3(+)CD4(+) T cell ratio and NK cells. Combination therapy with PLX4720 and anti-CCL2 or agonistic anti-CD137 antibodies demonstrated significant antitumor activity in mouse transplant and de novo tumorigenesis models. These data elucidate a role for host CCR2 in the mechanism of action of type I BRAF inhibitors and support the therapeutic potential of combining BRAF inhibitors with immunotherapy

    Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1

    Get PDF
    The mechanisms by which tumor microenvironments modulate nucleic acid-mediated innate immunity remain unknown. Here, we identified the receptor TIM-3 as key to circumventing the stimulatory effects of nucleic acids in tumor immunity. TIM-3 is highly expressed on tumor-associated dendritic cells (DC) in murine tumors and cancer patients. DC-derived TIM-3 suppresses innate immune responses through Toll-like receptor and cytosolic sensor recognition of nucleic acids via a galectin-9 independent mechanism. Instead, TIM-3 interacts with the HMGB1 to interfere with recruitment of nucleic acids into DC endosomes and attenuates the therapeutic efficacy of DNA vaccination and chemotherapy by reducing immunogenicity of nucleic acids released from dying tumor cells. Together, these findings define a novel mechanism by which tumor microenvironments suppress antitumor immunity mediated by nucleic acids
    corecore